274 research outputs found
Systematic review of studies examining transtibial prosthetic socket pressures with changes in device alignment
Suitable lower-limb prosthetic sockets must provide an adequate distribution of the pressures created from standing and ambulation. A systematic search for articles reporting socket pressure changes in response to device alignment perturbation was carried out, identifying 11 studies. These were then evaluated using the American Academy of Orthotists and Prosthetists guidelines for a state-of-the-science review. Each study used a design where participants acted as their own controls. Results were available for 52 individuals and 5 forms of alignment perturbation. Four studies were rated as having moderate internal and external validity, the remainder were considered to have low validity. Significant limitations in study design, reporting quality and in representation of results and the suitability of calculations of statistical significance were evident across articles. Despite the high inhomogeneity of study designs, moderate evidence supports repeatable changes in pressure distribution for specific induced changes in component alignment. However, there also appears to be a significant individual component to alignment responses. Future studies should aim to include greater detail in the presentation of results to better support later meta-analyses
Association of PPARΞ³2 polymorphisms with carcass and meat quality traits in a Pietrain x Jinhua F2 population
The PPARΞ³2 gene is a key regulator of both proliferation and preadipocyte differentiation in mammals. Herein its genotype and allele frequencies were analyzed using PCR-SSCP in eight pig breeds (N = 416). Two kinds of polymorphisms of the PPARΞ³2 gene were detected, including a previously reported shift SNP A177G (Met59Val) in exon 1 and a novel silent mutation G876A in exon 5. The results revealed that European pig breeds carry a higher allele A frequency at the A177G locus and a fixed GG genotype at the G876A locus. Allele A at the G876A locus was only found in Jinhua pigs. The association between haplotype (A177G/G876A) and carcass and meat quality traits was analyzed in a Pietrain x Jinhua F2 population (N = 248). The PPARΞ³2 gene was found to be significantly associated with backfat thickness at the shoulder (p < 0.05), 6β7th ribs (p < 0.01), last rib (p < 0.01), gluteus medius (p <0.05) and ham weight (p < 0.01). Significant effects of different haplotypes on ham weight and backfat thickness at the 6β7th ribs, last rib, and gluteus medius were also observed
Identification of a possible role of thymine DNA glycosylase (TDG) in epigenome maintenance
Thymine DNA glycosylase (TDG) was discovered as an enzyme capable of removing uracil (U) and thymine (T) from G/U and G/T mispairs, respectively. Owing to this ability, TDG was proposed to initiate restoration of C/G pairs at sites of cytosine or 5-methycytosine (5-meC) deamination. In addition to products of base deamination, the substrate spectrum of TDG covers a wide range of DNA base damages resulting from base oxidation and alkylation. TDG was also found to engage in physical and functional interactions with transcription factors, and more recent evidence supports additional interactions with the de novo DNA methyltransferases Dnmt3a and 3b in the context of gene transcription. Together with its biochemical properties, these observations suggest that TDG might be targeted to gene regulatory sequences as part of a macromolecular assembly to control their functional integrity. TDG may counteract the mutagenic effects of C and 5-meC deamination in CG-rich regions and/or be involved in the maintenance of CpG promoter methylation patterns. A tight regulation of CpG methylation at gene regulatory regions is critical for accurate gene expression, proper cellular differentiation and embryonic development. A somewhat surprising but in this context consistent finding was that, in contrast to other DNA glycosylases, TDG is essential for proper fetal development since a targeted knockout of the gene leads to embryonic lethality.
To gain insights into the biological functions of TDG, we aimed to establish and apply biochemical fractionation procedures for high affinity purification and structural and functional characterization of TDG containing proteins complexes.
The first part of the thesis was concerned with biochemical characterization of the protein interaction network of TDG in living mammalian cells. To this end, I applied different approaches allowing high affinity isolation of protein complexes from mammalian cells, such as the tandem affinity purification (TAP) method as well as immunoprecipitation of endogenous protein and of the TDGa isoform from TdgA overexpressing embryonic stem (ES) cells. These efforts, however, did not reveal any TDG interacting partners in subsequent mass spectrometry (MS) analyses. These results were surprising, as TDG was previously reported to interact with transcription factors and DNA methyltransferases. Remarkably, however, all previously identified protein interactors of TDG were discovered in screen with the respective partner proteins, and under conditions of simultaneous overexpression of both interacting proteins. The only proteins ever identified in screen with TDG were Sumo1 and Sumo3, which turned out to covalently modify the glycosylase. For this reason, we decided to pursue our search with classical cell fractionation experiments. We first did gel filtration experiments from total cell lysates and showed that TDG is indeed able to form distinct multiprotein complexes in undifferentiated mouse embryonic stem cells that may also contain the RNA helicase p68. Further subcellular fractionation experiments then revealed that TDG is present in all cell compartments, with a significant fraction of nuclear TDG being associated with chromatin, together with p68 and de novo DNA methyltransferases. Together with published findings, these results suggested that protein complexes containing TDG might act in a chromatin-associated context, at gene regulatory regions.
The developmental phenotype of Tdg-/- knockout mice and the interactions of TDG with factors involved in developmental gene regulation (e.g. retinoic acid receptors RAR/RXR) implicate a function of TDG during early development and cell differentiation, at times governed by dynamic changes in gene expression, DNA methylation and histone modifications. Such changes have been studied using a well-established during in vitro differentiation of ES cells to lineage committed neuronal progenitors (NPs). We thus aimed to address the function of TDG as part of chromatin associated protein complexes during the process of retinoic acid induced differentiation of ES cells to NPs.
In the second part of the thesis we made use of a this well-established in vitro differentiation system to examine the genome-wide localization of TDG to chromatin by TDG chromatin immunoprecipitation (ChIP) and to correlate TDG association to chromatin with gene expression and DNA methylation changes linked to cellular differentiation. TDG ChIP combined with high throughput sequencing showed that TDG associates with high preference to CpG islands in promoters of actively transcribed genes or genes poised for transcriptional activation. Such CpG rich sequences are normally unmethylated in mammalian genomes. Interestingly, we found TDG to localize to promoters of many genes controlling pluripotency (e.g. Oct4, Nanog) and developmental processes (e.g. Sfrp2, Tgfb2, Gata6), thus, supporting a function of TDG in cell differentiation and/or embryonic development. As different lines of circumstantial evidence have associated TDG with changes in CpG methylation following activation of hormone responsive gene promoters, we went on to further test genome-wide promoter methylation in Tdg+/- and Tdg-/- NPs making use of a combination of methylated DNA immunoprecipitation (MeDIP) and microarray technology. This showed that the loss of TDG does not affect global promoter DNA methylation. Nevertheless, there were a number of significant differences, suggesting that TDG might affect the CpG methylation pattern at some promoters. Also, owing to the limited resolution of the MeDIP method, however, we could not exclude an involvement of TDG in the control of DNA methylation of specific promoter CpGs. Additional bisulfite sequencing of promoters of TDG bound developmental genes (e.g. Sfrp2, Tgfb2) in NPs and differentiated mouse embryonic fibroblasts (MEFs) have indeed proved that loss of TDG affects local changes in DNA methylation at particular CpGs.
Subsequent analysis of genome-wide gene expression profiles of ES cells and differentiated Tdg+/- and Tdg-/- NPs revealed that a limited number of genes (229) are differentially regulated in ES, whereas substantial differences in gene expression in were observed in NPs (1022 genes). This implicated a specific function of TDG in the regulation of cell differentiation triggered gene expression changes. Detailed analysis of the expression of the Pax6 gene, accurate regulation of which is essential for proper neuron development, showed that its promoter is bound by TDG and that its transcription is inappropriately regulated upon further differentiation of Tdg-/- NPs into the neuronal lineage. Whereas Tdg+/- NPs efficiently downregulated Pax6 (50x) and further differentiated into neuron-like cells, Tdg-/- NPs only partially downregulated Pax6 gene expression (6x) and underwent apoptosis at day 2 after plating in neuronal medium. This phenotype was complemented by expression of TDGa, clearly implicating TDG in the regulation of Pax6 expression during differentiation of ES cells to terminal neurons.
We further observed misregulation of pluripotency genes (e.g. Oct4) regulated by TDG bound promoters during early differentiation of ES cells. In the absence of TDG, ES cells showed the tendency to enter spontaneous and/or RA induced differentiation, suggesting a role for TDG in the regulation of pluripotency. During RA induced differentiation we further observed the activation of the neuron specific gene Lrrtm2 exclusively in TDG proficient cells. In addition, ChIP experiments showed that transcription factors involved in the activation of the Lrrtm2 gene (e.g. COUP-TFI, RAR) are not recruited to the respective promoter in Tdg-/- cells, suggesting that TDG might act passively as a scaffold factor important for the recruitment of transcription factors to promoter regions.
I set out to clarify the biological function of TDG by investigating its molecular interactions in mammalian cells. I found that TDG, as a DNA repair enzyme, associates tightly with chromatin, where it localizes with high preference to CpG island promoters of active genes and genes poised to be expressed. I also found that the loss of TDG causes misregulation of genes during cell differentiation and that this appears to be related to a function of TDG in establishing and/or maintaining CpG methylation pattern in gene regulatory sequences. These discoveries implicate a novel function of DNA repair, in the maintenance not only of the genome, but also the epigenome
Altered oscillatory brain dynamics after repeated traumatic stress
Kolassa I-T, Wienbruch C, Neuner F, et al. Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psychiatry. 2007;7(1): 56.BACKGROUND: Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. METHODS: Using magnetoencephalographic (MEG-based) source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD) in comparison to 97 controls. RESULTS: PTSD patients showed elevated production of focally generated slow waves (1-4 Hz), particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. CONCLUSION: The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala
Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation
The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion
Gender Differences in Associations of Glutamate Decarboxylase 1 Gene (GAD1) Variants with Panic Disorder
Background: Panic disorder is common (5% prevalence) and females are twice as likely to be affected as males. The heritable component of panic disorder is estimated at 48%. Glutamic acid dehydrogenase GAD1, the key enzyme for the synthesis of the inhibitory and anxiolytic neurotransmitter GABA, is supposed to influence various mental disorders, including mood and anxiety disorders. In a recent association study in depression, which is highly comorbid with panic disorder, GAD1 risk allele associations were restricted to females.
Methodology/Principal Findings: Nineteen single nucleotide polymorphisms (SNPs) tagging the common variation in GAD1 were genotyped in two independent gender and age matched case-control samples (discovery sample n = 478; replication sample n = 584). Thirteen SNPs passed quality control and were examined for gender-specific enrichment of risk alleles associated with panic disorder by using logistic regression including a genotypeΓgender interaction term. The latter was found to be nominally significant for four SNPs (rs1978340, rs3762555, rs3749034, rs2241165) in the discovery sample; of note, the respective minor/risk alleles were associated with panic disorder only in females. These findings were not confirmed in the replication sample; however, the genotypeΓgender interaction of rs3749034 remained significant in the combined sample. Furthermore, this polymorphism showed a nominally significant association with the Agoraphobic Cognitions Questionnaire sum score.
Conclusions/Significance: The present study represents the first systematic evaluation of gender-specific enrichment of risk alleles of the common SNP variation in the panic disorder candidate gene GAD1. Our tentative results provide a possible explanation for the higher susceptibility of females to panic disorder
The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells
INTRODUCTION: Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. METHOD: A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. RESULTS: In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. CONCLUSION: Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor
Contributions of Dopamine-Related Genes and Environmental Factors to Highly Sensitive Personality: A Multi-Step Neuronal System-Level Approach
Traditional behavioral genetic studies (e.g., twin, adoption studies) have shown that human personality has moderate to high heritability, but recent molecular behavioral genetic studies have failed to identify quantitative trait loci (QTL) with consistent effects. The current study adopted a multi-step approach (ANOVA followed by multiple regression and permutation) to assess the cumulative effects of multiple QTLs. Using a system-level (dopamine system) genetic approach, we investigated a personality trait deeply rooted in the nervous system (the Highly Sensitive Personality, HSP). 480 healthy Chinese college students were given the HSP scale and genotyped for 98 representative polymorphisms in all major dopamine neurotransmitter genes. In addition, two environment factors (stressful life events and parental warmth) that have been implicated for their contributions to personality development were included to investigate their relative contributions as compared to genetic factors. In Step 1, using ANOVA, we identified 10 polymorphisms that made statistically significant contributions to HSP. In Step 2, these polymorphism's main effects and interactions were assessed using multiple regression. This model accounted for 15% of the variance of HSP (p<0.001). Recent stressful life events accounted for an additional 2% of the variance. Finally, permutation analyses ascertained the probability of obtaining these findings by chance to be very low, p ranging from 0.001 to 0.006. Dividing these loci by the subsystems of dopamine synthesis, degradation/transport, receptor and modulation, we found that the modulation and receptor subsystems made the most significant contribution to HSP. The results of this study demonstrate the utility of a multi-step neuronal system-level approach in assessing genetic contributions to individual differences in human behavior. It can potentially bridge the gap between the high heritability estimates based on traditional behavioral genetics and the lack of reproducible genetic effects observed currently from molecular genetic studies
The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders
Recent evidence suggests that the GABA transporter 1 (GAT-1; SLC6A1) plays a role in the pathophysiology and treatment of anxiety disorders. In order to understand the impact of genetic variation within SLC6A1 on pathological anxiety, we performed a caseβcontrol association study with anxiety disorder patients with and without syndromal panic attacks. Using the method of sequential addition of cases, we found that polymorphisms in the 5β² flanking region of SLC6A1 are highly associated with anxiety disorders when considering the severity of syndromal panic attacks as phenotype covariate. Analysing the effect size of the association, we observed a constant increase in the odds ratio for disease susceptibility with an increase in panic severity (OR ~ 2.5 in severely affected patients). Nominally significant association effects were observed considering the entire patient sample. These data indicate a high load of genetic variance within SLC6A1 on pathological anxiety and highlight GAT-1 as a promising target for treatment of anxiety disorders with panic symptoms
- β¦