40 research outputs found

    Dietary change for sustainable food systems: Effects on climate, land use and health

    Get PDF
    Food production and consumption are key drivers of environmental pressures and essential factors in the promotion and maintenance of health. Production of food occupies more than 1/3 of global land areas and is estimated to be responsible for some 30% of global greenhouse gas emissions. At the same time, we live in a world where nearly one billion people go hungry and even more people suffer from health problems related to overweight and obesity. This raises the question about sustainability of the current food systems. In this thesis the potential of dietary change as a measure to reduce environmental impact and increase health is analyzed with special attention to uncertainty aspects in used data and methods. The results illustrate that awareness of the variability and uncertainty in used data and methods may be crucial for a proper use and interpretation of results in sustainability studies of food and diets. It is further suggested that dietary change, in areas with affluent diet, could play an important role in reaching environmental and health goals, with up to 50% potential to reduce GHG emissions and land use change. The potential to improve sustainability of the food system through dietary change can be substantial and mainly depends on the amount and type of meat included in the diet. Further understanding of dietary change as measure for more sustainable food systems requires interdisciplinary and holistic assessments of the diet including more sustainability aspects. There is also need for improved knowledge of the environmental impact of substitutes and complements to meat, of the effect of dietary change in different geographical regions, of the uncertainties in dietary scenario studies and of policy instruments that can facilitate the transition towards more sustainable diets

    A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Get PDF
    Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS). Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%).Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW), EAW with added lactic acid (EAW-la), and ordinary whole grain wheat bread (WGW). All test breads were baked at pumpernickel conditions (20 hours, 120°C). A conventionally baked white wheat bread (REF) was used as reference. Resistant starch (RS) content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis) in breads based on EAW than in WGW (p<0.001). Lactic acid further increased RS (p<0.001) compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05), but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI) (r= − 0.571, p<0.001).This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response

    Adherence to the Swedish dietary guidelines and the impact on mortality and climate in a population-based cohort study

    Get PDF
    Abstract Objective: To assess the associations between adherence to the Swedish dietary guidelines and all-cause mortality (i.e. assessing the index’ ability to predict health outcomes), as well as levels of dietary greenhouse gas emissions (GHGEs). Design: A longitudinal study 1990–2016 within the population-based cohort VĂ€sterbotten Intervention Programme. Dietary data were based on FFQs. Diet quality was assessed by the Swedish Healthy Eating Index for Adults 2015 (SHEIA15), based on the 2015 Swedish dietary guidelines. Dietary GHGEs were estimated from life cycle assessment data including emissions from farm to industry gate. Hazard ratios (HR) and 95 % CI of all-cause mortality were evaluated with Cox proportional hazards regression, and differences in median GHGEs were tested between quintiles of SHEIA15 score using the Kruskal–Wallis one-way ANOVA test. Setting: Northern Sweden. Participants: In total, 49 124 women and 47 651 men, aged 35–65 years. Results: Median follow-up times were 16·0 years for women and 14·7 years for men, during which time 3074 women and 4212 men died. A consistent trend of lower all-cause mortality HR for both sexes with higher SHEIA15 scores was demonstrated. For women, the all-cause mortality HR was 0·81 ((95 % CI 0·71, 0·92); P = 0·001) and for men 0·90 ((95 % CI 0·81, 0·996); P = 0·041) between the quintile with the highest SHEIA15 score compared with the quintile with the lowest SHEIA15 score. A consistent trend of lower estimated dietary GHGEs among both sexes with higher SHEIA15 scores was also found. Conclusions: Adherence to Swedish dietary guidelines, estimated by SHEIA15, seems to promote longevity and reduce dietary climate impact

    Integration of environment and nutrition in life cycle assessment of food items: opportunities and challenges

    Get PDF
    This report is the outcome of a consensus-building project to agree on best practices for environmental and nutritional Life Cycle Assessment (nLCA) methodology, and identify future research needs. The project involved 30 nutritional and environmental LCA researchers from 18 countries. It focused on the assessment of food items (as opposed to meals or diets).Best practice recommendations were developed to address the intended purpose of an LCA study and related modeling approach, choice of an appropriate functional unit, assessment of nutritional value, and reporting nLCA results. An nLCA study should report the quantities of as many essential nutrients as possible and aim to provide information on the nutritional quality and/or health impacts in addition to nutrient quantities. Outstanding issues requiring further research attention include: defining a minimum number of nutrients to be considered in an nLCA study; treatment of nutrients to limit; use of nutrient indexes; further development of Impact Assessment methods; representation of nutritional changes that may occur during subsequent distribution and food preparation in cradle-to-gate nLCA studies; and communication of data uncertainty and variability. More data are required for different regions (particularly developing countries); for the processing, distribution, retail, and consumption life cycle stages; and for food loss and waste. Finally, there is a need to extend nLCA methodology for the assessment of meals and diets, to consider further how to account for the multi-functionality of food in a sustainability framework, and to set nLCA studies within the context of environmental limits.These results provide a robust basis for improving nLCA methodology and applying it to identify solutions that minimize the trade-offs between nourishing populations and safeguarding the environment

    Sustainable nutrition: Opportunities, risks and uncertainties from environmental and health perspectives

    No full text
    Food production and consumption are key drivers of environmental pressures and are essential factors in the promotion and maintenance of health. Production of food occupies more than one third of global land areas and is estimated to be responsible for some 30% of global greenhouse gas emissions. At the same time, we live in a world where nearly one billion people go hungry and even more people suffer from problems related to overweight and associated diet-related chronic diseases. This raises the question of the sustainability of current food systems and diets. This thesis analyzes the potential and limitation for diet change to contribute more sustainable food systems. The results show that dietary change can reduce greenhouse gas emissions and land use demand of the diet, and simultaneously improve the nutritional quality and health effects of the diet. The positive synergies suggest that dietary change can play an important role in reaching future environmental and health goals. Assessments of environmental- and health effects of food consumption and production are hampered by uncertainty and variability, and awareness of the limitations in the quality of data and methods is crucial. Transparent presentation of data and methods is necessary for a proper evaluation of the reliability and significance of the results. Improvement of data and further development of methods are required to further increase the quality of the assessments. In this thesis, an interdisciplinary approach is used which combines methods originating from the fields of environmental-, nutritional- and health- studies. Life cycle assessment is used to quantify the greenhouse gas emissions and land use demand of food production, while the nutritional and health effects of food consumption are analyzed by using nutrient calculation and nutrition epidemiology. Integration of nutritional and health aspects into environmental assessments of food is an exciting development of the research field contributing to important new knowledge. To further broaden the perspectives and deepen the knowledge of sustainable food systems more aspects need to be covered

    Meat-consumption statistics: reliability and discrepancy

    No full text
    Interest in meat consumption and its impact on the environment and health has grown markedly over the last few decades and this upsurge has led to greater demand for reliable data. This article aims to describe methods for producing meat-consumption statistics and discuss their limitations and strengths; to identify uncertainties in statistics and to estimate their individual impact; to outline how relevant data are produced and presented at the national (Swedish), regional (Eurostat), and international (FAOSTAT) levels; to analyze the consequences of identified discrepancies and uncertainties for estimating the environmental and health effects of meat consumption; and to suggest recommendations for improved production, presentation, and use of meat-consumption statistics. We demonstrate many inconsistencies in how meat-consumption data are produced and presented. Of special importance are assumptions on bone weight, food losses and waste, weight losses during cooking, and nonmeat ingredients. Depending on the methods employed to handle these ambiguous factors, per capita meat-consumption levels may differ by a factor of two or more. This finding illustrates that knowledge concerning limitations, uncertainties, and discrepancies in data is essential for a correct understanding, interpretation, and use of meat-consumption statistics in, for instance, dietary recommendations related to health and environmental issues

    KartlÀggning av den nordiska livsmedelskonsumtionens pÄverkan pÄ biologisk mÄngfald

    No full text
    The climate impact of food production has been lively debated over the last decades. It is e.g. well known that some products have a higher climate impact in comparison to other food products. The biodiversity impact of different food products is however less known. To steer the food production in a positive direction as well as to enable consumers, restaurants, public kitchens, and the food industry to make well-informed decisions, we need to address and measure this impact. The aim of this study has been to examine the biodiversity impact of Nordic and European food consumption. In this report we present (1) a brief summary of biodiversity indicators linked to food production and consumption, (2) different methods to evaluate biodiversity impact of food products and (3) a literature review of studies that assess biodiversity impacts of food products and diets. Based on the literature review, we identify food products suggested to have a higher respectively lower negative impact on biodiversity and discuss what changes that could promote a Nordic diet with lower negative impact on biodiversity. Finally, we highlight knowledge gaps and possibilities for future work. There are different methods to examine the biodiversity impact on food products, such as life cycle assessment, input-output-model, and mapping tools. Biodiversity footprints are often based on the land use (area and intensity) in combination with parameters linked to where the production takes place and thus what biodiversity values can be affected. The consumed amount of food is also often considered – a product with a low impact per kg can get a high impact when consumed to a high degree and vice versa. Our literature review shows a variety of food products with high negative biodiversity impact. Particularly, products that are known drivers of deforestation in tropical regions, such as palm oil, coffee, and cacao – as well as meat and/or animal products that have been fed with soybeans derived from tropical regions have a high negative impact on biodiversity. On the other hand, consumption of foods as vegetables, starchy roots, and pulses – ideally with domestic origin – are examples of foods indicated to have lower biodiversity impact which would be beneficial to eat more of in the Nordic diet. There are also examples of agricultural systems where human interference is crucial for maintaining a high level of biodiversity, for example keeping grazing animals on high-naturevalue-grasslands. If these lands are abandoned or planted with forest, numerous of species will be extinct. Thus, meat linked to these grasslands can also support biodiversity, especially in the Nordic countries where there are relatively many of these landscapes left (in comparison to the rest of Europe). As the studies reviewed varied in their scope, methods, and results, they are difficult to compare. More research is needed to confirm our conclusions. Furthermore, none of the methods are flawless and there are obvious difficulties with finding a transferable and scalable unit – like CO2-equivalents – since biodiversity impacts are highly dynamic and sitespecific. Additionally, most of the reviewed studies do not consider transformation of natural areas driven by food production, e.g., deforestation, and may therefore be underestimating the impacts. In future studies, the reference systems may also be discussed and further developed, and more taxonomic groups (e.g., arthropods such as insects) should preferably be included

    KartlÀggning av den nordiska livsmedelskonsumtionens pÄverkan pÄ biologisk mÄngfald

    No full text
    The climate impact of food production has been lively debated over the last decades. It is e.g. well known that some products have a higher climate impact in comparison to other food products. The biodiversity impact of different food products is however less known. To steer the food production in a positive direction as well as to enable consumers, restaurants, public kitchens, and the food industry to make well-informed decisions, we need to address and measure this impact. The aim of this study has been to examine the biodiversity impact of Nordic and European food consumption. In this report we present (1) a brief summary of biodiversity indicators linked to food production and consumption, (2) different methods to evaluate biodiversity impact of food products and (3) a literature review of studies that assess biodiversity impacts of food products and diets. Based on the literature review, we identify food products suggested to have a higher respectively lower negative impact on biodiversity and discuss what changes that could promote a Nordic diet with lower negative impact on biodiversity. Finally, we highlight knowledge gaps and possibilities for future work. There are different methods to examine the biodiversity impact on food products, such as life cycle assessment, input-output-model, and mapping tools. Biodiversity footprints are often based on the land use (area and intensity) in combination with parameters linked to where the production takes place and thus what biodiversity values can be affected. The consumed amount of food is also often considered – a product with a low impact per kg can get a high impact when consumed to a high degree and vice versa. Our literature review shows a variety of food products with high negative biodiversity impact. Particularly, products that are known drivers of deforestation in tropical regions, such as palm oil, coffee, and cacao – as well as meat and/or animal products that have been fed with soybeans derived from tropical regions have a high negative impact on biodiversity. On the other hand, consumption of foods as vegetables, starchy roots, and pulses – ideally with domestic origin – are examples of foods indicated to have lower biodiversity impact which would be beneficial to eat more of in the Nordic diet. There are also examples of agricultural systems where human interference is crucial for maintaining a high level of biodiversity, for example keeping grazing animals on high-naturevalue-grasslands. If these lands are abandoned or planted with forest, numerous of species will be extinct. Thus, meat linked to these grasslands can also support biodiversity, especially in the Nordic countries where there are relatively many of these landscapes left (in comparison to the rest of Europe). As the studies reviewed varied in their scope, methods, and results, they are difficult to compare. More research is needed to confirm our conclusions. Furthermore, none of the methods are flawless and there are obvious difficulties with finding a transferable and scalable unit – like CO2-equivalents – since biodiversity impacts are highly dynamic and sitespecific. Additionally, most of the reviewed studies do not consider transformation of natural areas driven by food production, e.g., deforestation, and may therefore be underestimating the impacts. In future studies, the reference systems may also be discussed and further developed, and more taxonomic groups (e.g., arthropods such as insects) should preferably be included
    corecore