503 research outputs found

    AMPS definition study on Optical Band Imager and Photometer System (OBIPS)

    Get PDF
    A study was conducted to define the characteristics of a modular optical diagnostic system (OBIPS) for AMPS, to provide input to Phase B studies, and to give information useful for experiment planning and design of other instrumentation. The system described consists of visual and UV-band imagers and visual and UV-band photometers; of these the imagers are most important because of their ability to measure intensity as a function of two spatial dimensions and time with high resolution. The various subsystems of OBIPS are in themselves modular with modules having a high degree of interchangeability for versatility, economy, and redundancy

    Periodic Radio and H-alpha Emission from the L Dwarf Binary 2MASSW J0746425+200032: Exploring the Magnetic Field Topology and Radius of an L Dwarf

    Get PDF
    [Abridged] We present an 8.5-hour simultaneous radio, X-ray, UV, and optical observation of the L dwarf binary 2MASSW J0746+20. We detect strong radio emission, dominated by short-duration periodic pulses at 4.86 GHz with P=124.32+/-0.11 min. The stability of the pulse profiles and arrival times demonstrates that they are due to the rotational modulation of a B~1.7 kG magnetic field. A quiescent non-variable component is also detected, likely due to emission from a uniform large-scale field. The H-alpha emission exhibits identical periodicity, but unlike the radio pulses it varies sinusoidally and is offset by exactly 1/4 of a phase. The sinusoidal variations require chromospheric emission from a large-scale field structure, with the radio pulses likely emanating from the magnetic poles. While both light curves can be explained by a rotating mis-aligned magnetic field, the 1/4 phase lag rules out a symmetric dipole topology since it would result in a phase lag of 1/2 (poloidal field) or zero (toroidal field). We therefore conclude that either (i) the field is dominated by a quadrupole configuration, which can naturally explain the 1/4 phase lag; or (ii) the H-alpha and/or radio emission regions are not trivially aligned with the field. Regardless of the field topology, we use the measured period along with the known rotation velocity (vsini=27 km/s), and the binary orbital inclination (i=142 deg), to derive a radius for the primary star of 0.078+/-0.010 R_sun. This is the first measurement of the radius of an L dwarf, and along with a mass of 0.085+/-0.010 M_sun it provides a constraint on the mass-radius relation below 0.1 M_sun. We find that the radius is about 30% smaller than expected from theoretical models, even for an age of a few Gyr.Comment: Submitted to Ap

    Detection of 2–4 GHz Continuum Emission from Ï” Eridani

    Get PDF
    The nearby star epsilon Eridani has been a frequent target of radio surveys for stellar emission and extraterrestrial intelligence. Using deep 2–4 GHz observations with the Very Large Array, we have uncovered a 29 ÎŒJy compact, steady continuum radio source coincident with epsilon Eridani to within 0."06 (â©œ2σ; 0.2 au at the distance of the star). Combining our data with previous high-frequency continuum detections of epsilon Eridani, our observations reveal a spectral turnover at 6 GHz. We ascribe the 2–6 GHz emission to optically thick, thermal gyroresonance radiation from the stellar corona, with thermal free–free opacity likely becoming relevant at frequencies below 1 GHz. The steep spectral index (α ≃ 2) of the 2–6 GHz spectrum strongly disfavors its interpretation as stellar-wind-associated thermal bremsstrahlung (α ≃ 0.6). Attributing the entire observed 2–4 GHz flux density to thermal free–free wind emission, we thus derive a stringent upper limit of 3 × 10⁻ÂčÂč M_⊙ yr⁻Âč on the mass-loss rate from epsilon Eridani. Finally, we report the nondetection of flares in our data above a 5σ threshold of 95 ÎŒJy. Together with the optical nondetection of the most recent stellar maximum expected in 2019, our observations postulate a likely evolution of the internal dynamo of epsilon Eridani

    A Case Study of On-the-Fly Wide-Field Radio Imaging Applied to the Gravitational-wave Event GW 151226

    Get PDF
    We apply a newly-developed On-the-Fly mosaicing technique on the NSF's Karl G. Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW 151226. In three epochs between 1.5 and 6 months post-merger we observed a 100 sq. deg region, with more than 80% of the survey region having a RMS sensitivity of better than 150 uJy/beam, in the northern hemisphere having a merger containment probability of 10%. The data were processed in near-real-time, and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1e29 erg/s/Hz. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW 170817 and radio follow-up in future gravitational wave observing runs.Comment: 11 pages. 6 figures. 1 table. Accepted for publication in ApJ Letter

    A simultaneous search for prompt radio emission associated with the short GRB 170112A using the all-sky imaging capability of the OVRO-LWA

    Get PDF
    We have conducted the most sensitive low frequency (below 100 MHz) search to date for prompt, low-frequency radio emission associated with short-duration gamma-ray bursts (GRBs), using the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA). The OVRO-LWA's nearly full-hemisphere field-of-view (∌20\sim20,000000 square degrees) allows us to search for low-frequency (sub-100100 MHz) counterparts for a large sample of the subset of GRB events for which prompt radio emission has been predicted. Following the detection of short GRB 170112A by Swift, we used all-sky OVRO-LWA images spanning one hour prior to and two hours following the GRB event to search for a transient source coincident with the position of GRB 170112A. We detect no transient source, with our most constraining 1σ1\sigma flux density limit of 650 mJy650~\text{mJy} for frequencies spanning 27 MHz−84 MHz27~\text{MHz}-84~\text{MHz}. We place constraints on a number of models predicting prompt, low-frequency radio emission accompanying short GRBs and their potential binary neutron star merger progenitors, and place an upper limit of Lradio/LÎłâ‰Č7×10−16L_\text{radio}/L_\gamma \lesssim 7\times10^{-16} on the fraction of energy released in the prompt radio emission. These observations serve as a pilot effort for a program targeting a wider sample of both short and long GRBs with the OVRO-LWA, including bursts with confirmed redshift measurements which are critical to placing the most constraining limits on prompt radio emission models, as well as a program for the follow-up of gravitational wave compact binary coalescence events detected by advanced LIGO and Virgo.Comment: 14 pages, 5 figures, ApJ submitte

    Rotational Velocities of Very Low Mass Binaries

    Get PDF
    We present rotational velocities for individual components of eleven very low mass (VLM) binaries with spectral types between M7.5 and L4. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics (LGS AO) system. The binaries were targeted as part of a dynamical mass program, and their orbital inclinations are used to translate vsini into a rotational velocity for each component. We find that the observed sources tend to be rapid rotators (vsini > 10 km s^(-1)), consistent with previous measurements for ultracool objects. Five systems have component vsini's that are statistically different, with three binaries having velocity differences greater than 25 km s^(-1). To bring these discrepant rotational velocities into agreement would require their rotational axes to be inclined between 10 to 40° with respect to each other, and that at least one component has a significant inclination with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have interesting implications for binary star formation. Two of the binaries with large differences in rotational velocity are also known radio sources, LP 349-25AB and 2MASS 0746+20AB. LP 349-25B is rotating at ∌95 km s^(-1), within a factor of ∌3 of the break up speed, and is one of the most rapidly rotating VLM objects known

    Rotational Velocities of Individual Components in Very Low Mass Binaries

    Get PDF
    We present rotational velocities for individual components of 11 very low mass (VLM) binaries with spectral types between M7 and L7.5. These results are based on observations taken with the near-infrared spectrograph, NIRSPEC, and the Keck II laser guide star adaptive optics system. We find that the observed sources tend to be rapid rotators (v sin i > 10 km s^(–1)), consistent with previous seeing-limited measurements of VLM objects. The two sources with the largest v sin i, LP 349–25B and HD 130948C, are rotating at ~30% of their break-up speed, and are among the most rapidly rotating VLM objects known. Furthermore, five binary systems, all with orbital semimajor axes ≟3.5 AU, have component v sin i values that differ by greater than 3σ. To bring the binary components with discrepant rotational velocities into agreement would require the rotational axes to be inclined with respect to each other, and that at least one component is inclined with respect to the orbital plane. Alternatively, each component could be rotating at a different rate, even though they have similar spectral types. Both differing rotational velocities and inclinations have implications for binary star formation and evolution. We also investigate possible dynamical evolution in the triple system HD 130948A–BC. The close binary brown dwarfs B and C have significantly different v sin i values. We demonstrate that components B and C could have been torqued into misalignment by the primary star, A, via orbital precession. Such a scenario can also be applied to another triple system in our sample, GJ 569A–Bab. Interactions such as these may play an important role in the dynamical evolution of VLM binaries. Finally, we note that two of the binaries with large differences in component v sin i, LP 349–25AB and 2MASS 0746+20AB, are also known radio sources

    A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    Full text link
    This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A
    • 

    corecore