414 research outputs found

    Boron isotope insights into the origin of subduction signatures in continent-continent collision zone volcanism

    Get PDF
    We present the first boron abundance and δ11B data for young (1.5-0 Ma) volcanic rocks formed in an active continent-continent collision zone. The δ11B of post-collisional volcanic rocks (−5 to +2‰) from the Armenian sector of the Arabia-Eurasia collision zone are heavier than mid-ocean ridge basalts (MORB), confirming trace element and isotope evidence for their derivation from a subduction-modified mantle source. Based on the low B/Nb (0.03-0.25 vs 0.2-90 in arc magmas), as well as low Ba/Th and Pb/Ce, this source records a subduction signature which is presently fluid-mobile element depleted relative to most arc settings. The heavier than MORB δ11B of post-collision volcanic rocks argues against derivation of their subduction signature from a stalled slab, which would be expected to produce a component with a lighter than MORB δ11B, due to previous fluid depletion. Instead, the similarity of δ11B in Plio-Pleistocene post-collision to 41 Ma alkaline igneous rocks also from Armenia (and also presented in this study), suggests that the subduction signature is inherited from Mesozoic-Paleogene subduction of Neotethys oceanic slabs. The slab component is then stored in the mantle lithosphere in amphibole, which is consistent with the low [B] in both Armenian volcanic rocks and metasomatic amphibole in mantle xenoliths. Based on trace element and radiogenic isotope systematics, this slab component is thought to be dominated by sediment melts (or supercritical fluids). Previously published δ11B of metasediments suggests a sediment-derived metasomatic agent could produce the B isotope composition observed in Armenian volcanic rocks. The lack of evidence for aqueous fluids preserved over the 40 Myr since initial collision supports observations that this latter component is transitory, while the lifetime of sediment melts/supercritical fluids can be extended to >40 Myr

    Magmatic and metasomatic effects of magma-carbonate interaction recorded in calc-silicate xenoliths from Merapi volcano (Indonesia)

    Get PDF
    Magma-carbonate interaction is an increasingly recognised process occurring at active volcanoes worldwide, with implications for the magmatic evolution of the host volcanic systems, their eruptive behaviour, volcanic CO2 budgets, and economic mineralisation. Abundant calc-silicate skarn xenoliths are found at Merapi volcano, Indonesia. We identify two distinct xenolith types: magmatic skarn xenoliths, which contain evidence of formation within the magma, and exoskarn xenoliths, which more likely represent fragments of crystalline metamorphosed wall-rocks. The magmatic skarn xenoliths comprise distinct compositional and mineralogical zones with abundant Ca-enriched glass (up to 10 wt% relative to lava groundmass), mineralogically dominated by clinopyroxene (En15-43Fs14-36Wo41-51) + plagioclase (An37-100) ± magnetite in the outer zones towards the lava contact and by wollastonite ± clinopyroxene (En17-38Fs8-34Wo49-59) ± plagioclase (An46-100) ± garnet (Grs0-65Adr24-75Sch0-76) ± quartz in the xenolith cores. These zones are controlled by Ca transfer from the limestone protolith to the magma and by transfer of magma-derived elements in the opposite direction. In contrast, the exoskarn xenoliths are unzoned and essentially glass-free, representing equilibration at sub-solidus conditions. The major mineral assemblage in the exoskarn xenoliths is wollastonite + garnet (Grs73-97Adr3-24) + Ca-Al-rich clinopyroxene (CaTs0-38) + anorthite ± quartz, with variable amounts of either quartz or melilite (Geh42-91) + spinel. Thermobarometric calculations, fluid inclusion microthermometry and newly calibrated oxybarometry based on Fe3+/ΣFe in clinopyroxene indicate magmatic skarn xenolith formation conditions of ∼850 ± 45 °C, < 100 MPa and at an oxygen fugacity between the NNO and HM buffer. The exoskarn xenoliths, in turn, formed at 510-910 °C under oxygen fugacity conditions between NNO and air. These high oxygen fugacities are likely imposed by the large volumes of CO2 liberated from the carbonate. Halogen and sulphur-rich mineral phases in the xenoliths testify to the infiltration by a magmatic brine. In some xenoliths this is associated with the precipitation of copper-bearing mineral phases by sulphur dissociation into sulphide and sulphate, indicating potential mineralisation in the skarn system below Merapi. Compositions of many xenolith clinopyroxene and plagioclase crystals overlap with that of magmatic minerals, suggesting that the crystal cargo in Merapi magmas may contain a larger proportion of skarn-derived xenocrysts than previously recognised. Assessment of xenolith formation timescales demonstrates that magma-carbonate interaction and associated CO2 release could affect eruption intensity, as recently suggested for Merapi and similar carbonate-hosted volcanoes elsewhere

    Electrochemical Estimations of the Gold Nanoparticle Size Effect on Cysteine-Gold Oxidation,

    Get PDF
    Gold nanoparticles are interesting for nanobiomedical applications, such as for drug delivery and as diagnostic imaging contrast agents. However, their stability and reactivity in-vivo are influenced by their surface properties and size. Here, we investigate the electrochemical oxidation of differently sized citrate-coated gold nanoparticles in the presence and absence of L-cysteine, a thiol-containing amino acid with high binding affinity to gold. We found that smaller sized (5, 10 nm) gold nanoparticles were significantly more susceptible to electrochemical L-cysteine interactions and/or L-cysteine-facilitated gold oxidation than larger (20, 50 nm) sized gold nanoparticles, both for the same mass and nominal surface area, under the conditions investigated (pH 7.4, room temperature, stagnant solutions, and scan rates of 0.5 to 450 mV s−1). The electrochemical measurements of drop-casted gold nanoparticle suspensions on paraffin-impregnated graphite electrodes were susceptible to the quality of the electrode. Increased cycling resulted in irreversible oxidation and detachment/oxidation of gold into solution. Our results suggest that L-cysteine-gold interactions are stronger for smaller nanoparticles

    Association of microRNAs With Embryo Development and Fertilization in Women Undergoing Subfertility Treatments: A Pilot Study

    Get PDF
    Objective: Small non-coding RNAs, known as microRNAs (miRNAs), have emerging regulatory functions within the ovary that have been related to fertility. This study was undertaken to determine if circulating miRNAs reflect the changes associated with the parameters of embryo development and fertilization. Methods: In this cross-sectional pilot study. Plasma miRNAs were collected from 48 sequentially presenting women in the follicular phase prior to commencing in vitro fertilization (IVF). Circulating miRNAs were measured using locked nucleic acid (LNA)-based quantitative PCR (qPCR), while an updated miRNA data set was used to determine their level of expression. Results: Body mass index and weight were associated with the miRNAs let7b-3p and miR-375, respectively (p < 0.05), with the same relationship being found between endometrium thickness at oocyte retrieval and miR-885-5p and miR-34a-5p (p < 0.05). In contrast, miR-1260a was found to be inversely associated with anti-Mullerian hormone (AMH; p = 0.007), while miR-365a-3p, miR122-5p, and miR-34a-5p correlated with embryo fertilization rates (p < 0.05). However, when omitting cases of male infertility (n = 15), miR122-5p remained significant (p < 0.05), while miR-365a-3p and miR-34a-5p no longer differed; interestingly, however, miR1260a and mir93.3p became significant (p = 0.0087/0.02, respectively). Furthermore, age was negatively associated with miR-335-3p, miR-28-5p, miR-155-5p, miR-501-3p, and miR-497-5p (p < 0.05). Live birth rate was negatively associated with miR-335-3p, miR-100-5p, miR-497-5p, let-7d, and miR-574-3p (p < 0.05), but these were not significant when age was accounted for.However, with the exclusion of male factor infertility, all those miRNAs were no longer significant, though miR.150.5p emerged as significant (p = 0.042). A beta-regression model identified miR-1260a, miR-486-5p, and miR-132-3p (p < 0.03, p = 0.0003, p < 0.00001, respectively) as the most predictive for fertilization rate. Notably, changes in detectable miRNAs were not linked to cleavage rate, top quality embryos (G3D3), and blastocyst or antral follicle count. An ingenuity pathway analysis showed that miRNAs associated with age were also associated with the variables found in reproductive system diseases. Conclusion: Plasma miRNAs prior to the IVF cycle were associated with differing demographic and IVF parameters, including age, and may be predictive biomarkers of fertilization rate

    Familial clustering of Leiomyomatosis peritonealis disseminata: an unknown genetic syndrome?

    Get PDF
    BACKGROUND: Leiomyomatosis peritonealis disseminata (LPD) is defined as the occurrence of multiple tumorous intraabdominal lesions, which are myomatous nodules. LPD is a rare disease with only about 100 cases reported. The usual course of LPD is benign with the majority of the patients being premenopausal females. Only two cases involving men have been reported, no syndrome or familial occurrence of LPD has been described. CASE PRESENTATION: We describe a Caucasian-American family in which six members (three men) are diagnosed with Leiomyomatosis peritonealis disseminata (LPD) and three deceased family members most likely had LPD (based on the autopsy reports). Furthermore we describe the association of LPD with Raynaud's syndrome and Prurigo nodularis. CONCLUSION: Familial clustering of Leiomyomatosis peritonealis disseminata (LPD) has not been reported so far. The etiology of LPD is unknown and no mode of inheritance is known. We discuss possible modes of inheritance in the presented case, taking into account the possibility of a genetic syndrome. Given the similarity to other genetic syndromes with leiomyomatosis and skin alterations, we describe possible similar genetic pathomechanisms

    Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas

    Get PDF
    Interaction between magma and crustal carbonate at active arc volcanoes has recently been proposed as a source of atmospheric CO2, in addition to CO2 released from the mantle and subducted oceanic crust. However, quantitative constraints on efciency and timing of these processes are poorly established. Here, we present the frst in situ carbon and oxygen isotope data of texturally distinct calcite in calc-silicate xenoliths from arc volcanics in a case study from Merapi volcano (Indonesia). Textures and C-O isotopic data provide unique evidence for decarbonation, magma-fuid interaction, and the generation of carbonate melts. We report extremely light δ13CPDB values down to −29.3‰ which are among the lowest reported in magmatic systems so far. Combined with the general paucity of relict calcite, these extremely low values demonstrate highly efcient remobilisation of crustal CO2 over geologically short timescales of thousands of years or less. This rapid release of large volumes of crustal CO2 may impact global carbon cycling

    An integrated environmental and human systems modeling framework for Puget Sound restoration planning

    Get PDF
    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries)
    • …
    corecore