16 research outputs found
The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro
We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
Galaxies in Southern Bright Star Fields: 1 - Near-infrared imaging
Original article can be found at: http://www.aanda.org/--Copyright The European Southern ObservatoryPeer reviewe
Activity of comets at large heliocentric distances pre-perihelion
We present observational data for two long-period and three dynamically new comets observed at heliocentric distances between 5.8 to 14.0 AU. All of the comets exhibited activity beyond the distance at which water ice sublimation can be significant. We have conducted experiments on gas-laden amorphous ice samples and show that considerable gas emission occurs when the ice is heated below the temperature of the amorphous-crystalline ice phase transition (T � 137 K). We propose that annealing of amorphous water ice is the driver of activity in comets as they first enter the inner Solar System. Experimental data show that large grains can be ejected at low velocity during annealing and that the rate of brightening of the comet should decrease as the heliocentric distance decreases. These results are consistent with both historical observations of distant comet activity and with the data presented here. If observations of the onset of activity in a dynamically new comet are ever made, the distance at which this occurs would be a sensitive indicator of the temperature at which the comet had formed or represents the maximum temperature that it has experienced. New surveys such as Pan STARRS, may be able to detect these comets while they are still inactive. © 2009 Elsevier Inc
Recommended from our members
Dark Comets? Unexpectedly Large Nongravitational Accelerations on a Sample of Small Asteroids
We report statistically significant detections of nonradial, nongravitational accelerations based on astrometric data in the photometrically inactive objects 1998 KY26, 2005 VL1, 2016 NJ33, 2010 VL65, 2016 RH120, and 2010 RF12. The magnitudes of the nongravitational accelerations are greater than those typically induced by the Yarkovsky effect, and there is no radiation-based, nonradial effect that can be so large. Therefore, we hypothesize that the accelerations are driven by outgassing and calculate implied H2O production rates for each object. We attempt to reconcile outgassing-induced acceleration with the lack of visible comae or photometric activity via the absence of surface dust and low levels of gas production. Although these objects are small, and some are rapidly rotating, the surface cohesive forces are stronger than the rotational forces, and rapid rotation alone cannot explain the lack of surface debris. It is possible that surface dust was removed previously, perhaps via outgassing activity that increased the rotation rates to their present-day value. We calculate dust production rates of order ∼10−4 g s−1 in each object, assuming that the nuclei are bare, within the upper limits of dust production from a sample stacked image of 1998 KY26 of M ̇ Dust < 0.2 g s−1. This production corresponds to brightness variations of order ∼0.0025%, which are undetectable in extant photometric data. We assess the future observability of each of these targets and find that the orbit of 1998 KY26—which is also the target of the extended Hayabusa2 mission—exhibits favorable viewing geometry before 2025. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
The demise of Comet 85P/Boethin, the first EPOXI mission target
Comet 85P/Boethin was selected as the original comet target for the Deep Impact extended mission, EPOXI. Because this comet had been only observed at two apparitions in 1975 and 1986 and consequently had a large ephemeris error, an early intense recovery effort similar to that of 1P/Halley was undertaken beginning in 2005 using the ESO Very Large Telescopes (VLTs) in a distant comet program. These were challenging observations because of the low galactic latitude, and an error ellipse (the line of variations) that was larger than the CCD FOV, and the comet was not seen. Dedicated recovery observing time was awarded on the Subaru telescope in April and May 2006, and June 2007, in addition to time on the VLT and Canada–France–Hawaii telescopes during July–August 2007 with wide field mosaics and mosaicing techniques. The limiting V magnitudes from these observing runs ranged between 25.7 and 27.3 and again the comet was not seen in the individual nights. A new image processing technique was developed to stack images over extended runs and runs after distorting them to account for dilations and rotations in the line of variations using modifications of the world coordinate system. A candidate at V ? 27.3 was found in the CFHT data along the LOV, 2.5? west of the nominal ephemeris position. The EPOXI mission was unwilling to re-target the spacecraft without a confirmation. Additional time was secured using the Spitzer Space Telescope, the Gemini South 8-m telescope, the Clay and Baade (Magellan 6.5 m), CTIO 4 m, and SOAR 4 m telescopes during 2007 September and October A composite image made by stacking the new data showed no plausible candidate nucleus to a limiting magnitude of V = 28.5, corresponding to a nucleus radius between 0.1 and 0.2 km (assuming an albedo of 0.04). The comet was declared lost, presumably having disintegrated. Searches in the WISE data set revealed no debris trail, but no constraints on the possible time of disruption can be made. NASA approved the trajectory correction maneuver to go to Comet 103P/Hartley 2 on 2007 November 1. Many observers searched for the comet as it came to its December 2008 perihelion, but no trace of the nucleus was found.
Based on observations collected at the Very Large Telescope, Chile, in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, in part using data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii, in part using data collected at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which are operated by the Association for Research in Astronomy, under contract with the National Science Foundation, and in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). This work is also based in part on observations taken with the Spitzer Space Telescope, which is operated by JPL/Caltech under a contract with NASA. © 2012 Elsevier Inc
A View to the Future: Ultraviolet Studies of the Solar System
We discuss the status of ultraviolet knowledge of Solar System objects. We begin with a short historical survey, followed by a review of knowledge gathered so far and of existing observational assets. The survey indicates that UV observations, along with data collected in other spectral bands, are necessary and in some cases essential to understand the nature of our neighbors in the Solar System. By extension, similar observations are needed to explore the nature of extrasolar planets, to support or reject astro-biology arguments, and to compose and test scenarios for the formation and evolution of planetary systems. We propose a set of observations, describing first the necessary instrumental capabilitites to collect these and outlining what would be the expected scientific return. We identify two immediate programmatic requirements: the establishment of a mineralogic database in the ultraviolet for the characterization of planetary, ring, satellite, and minor planet surfaces, and the development and deployment of small orbital solar radiation monitors. The first would extend the methods of characterizing surfaces of atmosphere-less bodies by adding the UV segment. The latter are needed to establish a baseline against which contemporaneous UV observations of Solar System objects must be compared. We identify two types of UV missions, one appropriate for a two-meter-class telescope using almost off-the-shelf technology that could be launched in the next few years, and another for a much larger (5--20 meter class) instrument that would provide the logical follow-up after a decade of utilizing the smaller facility