78 research outputs found

    A spin- and angle-resolving photoelectron spectrometer

    Full text link
    A new type of hemispherical electron energy analyzer that permits angle and spin resolved photoelectron spectroscopy has been developed. The analyzer permits standard angle resolved spectra to be recorded with a two-dimensional detector in parallel with spin detection using a mini-Mott polarimeter. General design considerations as well as technical solutions are discussed and test results from the Au(111) surface state are presented

    Potentials in Li-Ion Batteries Probed by Operando Ambient Pressure Photoelectron Spectroscopy

    Get PDF
    The important electrochemical processes in a battery happen at the solid/liquid interfaces. Operando ambient pressure photoelectron spectroscopy (APPES) is one tool to study these processes with chemical specificity. However, accessing this crucial interface and identifying the interface signal are not trivial. Therefore, we present a measurement setup, together with a suggested model, exemplifying how APPES can be used to probe potential differences over the electrode/electrolyte interface, even without direct access to the interface. Both the change in electron electrochemical potential over the solid/liquid interface, and the change in Li chemical potential of the working electrode (WE) surface at Li-ion equilibrium can be probed. Using a Li4Ti5O12 composite as a WE, our results show that the shifts in kinetic energy of the electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the WE/electrolyte interface. Different shifts in kinetic energy are seen depending on if a phase transition reaction occurs or if a single phase is lithiated. The developed methodology can be used to evaluate charge transfer over the WE/electrolyte interface as well as the lithiation/delithiation mechanism of the WE

    Vibrationally-resolved RIXS reveals OH-group formation in oxygen redox active Li-ion battery cathodes †

    Get PDF
    Vibrationally-resolved resonant inelastic X-ray scattering (VR-RIXS) at the O K-edge is emerging as a powerful tool for identifying embedded molecules in lithium-ion battery cathodes. Here, we investigate two known oxygen redox-active cathode materials: the commercial LixNi0.90Co0.05Al0.05O2 (NCA) used in electric vehicles and the high-capacity cathode material Li1.2Ni0.13Co0.13Mn0.54O2 (LRNMC) for next-generation Li-ion batteries. We report the detection of a novel vibrational RIXS signature for Li-ion battery cathodes appearing in the O K pre-peak above 533 eV that we attribute to OH-groups. We discuss likely locations and pathways for OH-group formation and accumulation throughout the active cathode material. Initial-cycle behaviour for LRNMC shows that OH-signal strength correlates with the cathodes state of charge, though reversibility is incomplete. The OH-group RIXS signal strength in long-term cycled NCA is retained. Thus, VR-RIXS offers a path for gaining new insights to oxygen reactions in battery materials

    Early stage decomposition of solid polymer electrolytes in Li metal batteries

    Get PDF
    Development of functional and stable solid polymer electrolytes SPEs for battery applications is an important step towards both safer batteries and for the realization of lithium based or anode less batteries. The interface between the lithium and the solid polymer electrolyte is one of the bottlenecks, where severe degradation is expected. Here, the stability of three different SPEs poly ethylene oxide PEO , poly amp; 949; caprolactone PCL and poly trimethylene carbonate PTMC together with lithium bis trifluoromethanesulfonyl imide LiTFSI salt, is investigated after they have been exposed to lithium metal under UHV conditions. Degradation compounds, e.g. Li O R, LiF and LixSyOz, are identified for all SPEs using soft X ray photoelectron spectroscopy. A competing degradation between polymer and salt is identified in the outermost surface region lt;7 nm , and is dependent on the polymer host. PTMC LiTFSI shows the most severe decomposition of both polymer and salt followed by PCL LiTFSI and PEO LiTFSI. In addition, the movement of lithium species through the decomposed interface shows large variation depending on the polymer electrolyte syste

    A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+

    Get PDF
    This roadmap presents the transformational research ideas proposed by “BATTERY 2030+,” the European large-scale research initiative for future battery chemistries. A “chemistry-neutral” roadmap to advance battery research, particularly at low technology readiness levels, is outlined, with a time horizon of more than ten years. The roadmap is centered around six themes: 1) accelerated materials discovery platform, 2) battery interface genome, with the integration of smart functionalities such as 3) sensing and 4) self-healing processes. Beyond chemistry related aspects also include crosscutting research regarding 5) manufacturability and 6) recyclability. This roadmap should be seen as an enabling complement to the global battery roadmaps which focus on expected ultrahigh battery performance, especially for the future of transport. Batteries are used in many applications and are considered to be one technology necessary to reach the climate goals. Currently the market is dominated by lithium-ion batteries, which perform well, but despite new generations coming in the near future, they will soon approach their performance limits. Without major breakthroughs, battery performance and production requirements will not be sufficient to enable the building of a climate-neutral society. Through this “chemistry neutral” approach a generic toolbox transforming the way batteries are developed, designed and manufactured, will be created

    The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years

    Get PDF
    In this study, we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z ∼ 0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z ∼ 0.1) counterparts drawn from the MCXC meta-catalogue, supplemented by Sloan Digital Sky Survey imaging and spectroscopy. We observed striking differences in the morphological, colour, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broad-band colours, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51 ± 0.71 from z ∼ 0.9 to z ∼ 0.1. Through this and other comparisons, we conclude that a combination of major merging (mainly wet or mixed) and in situ star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3, while their average Sérsic index increased by ∼0.45 from z ∼ 0.9 to z ∼ 0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼7 Gyr

    Small-scale magnetic fields of the spectroscopic binary T Tauri stars V1878 Ori and V4046 Sgr

    No full text
    Aims. The goal of this study is to investigate the small-scale magnetic fields of the two spectroscopic binary T Tauri stars V1878 Ori and V4046 Sgr. This is done to complete the observational characterisation of the surface magnetic fields of these stars because only their large-scale magnetic fields have been studied with Zeeman Doppler imaging (ZDI) so far. Methods. To investigate the small-scale magnetic fields, the differential Zeeman intensification of near-infrared Ti 
    corecore