216 research outputs found

    First identification of excited states in the Tz_z = 1/2 nucleus 93^{93}Pd

    No full text
    The first experimental information about excited states in the N = Z + 1 nucleus 93Pd is presented. The experiment was performed using a 205 MeV 58Ni beam from the Vivitron accelerator at IReS, Strasbourg, impinging on a bismuth-backed 40Ca target. Gamma-rays, neutrons and charged particles emitted in the reactions were detected using the Ge detector array Euroball, the Neutron Wall liquid-scintillator array and the Euclides Si charged-particle detector system. The experimental level scheme is compared with the results of new shell model calculations which predict a coupling scheme with aligned neutron-proton pairs to greatly influence the level structure of NZN\approx Z nuclei at low excitation energies

    Direct reactions for nuclear structure required for fundamental symmetry tests

    Get PDF
    A program of nuclear structure studies to support fundamental symmetry tests has been initiated. Motivated by the search for an electric dipole moment in Hg-199, the structure in the vicinity has been explored via direct reaction studies. To date, these have included the Hg-198,Hg-200(d, d') inelastic scattering reactions, with the aim to obtain information on the E2 and E3 strength distributions, and the Hg-198(d, p) and Hg-200(d, t) reactions to obtain information on the single-particle states in 199Hg. The studies using the 200Hg targets have been fully analyzed using the FRESCO reaction code yielding the E2 and E3 strength distribution to 4 MeV in excitation energy, and the (d, t) single-particle strength to over 3 MeV in excitation energy

    Direct reactions for nuclear structure required for fundamental symmetry tests

    Get PDF
    A program of nuclear structure studies to support fundamental symmetry tests has been initiated. Motivated by the search for an electric dipole moment in Hg-199, the structure in the vicinity has been explored via direct reaction studies. To date, these have included the Hg-198,Hg-200(d, d') inelastic scattering reactions, with the aim to obtain information on the E2 and E3 strength distributions, and the Hg-198(d, p) and Hg-200(d, t) reactions to obtain information on the single-particle states in 199Hg. The studies using the 200Hg targets have been fully analyzed using the FRESCO reaction code yielding the E2 and E3 strength distribution to 4 MeV in excitation energy, and the (d, t) single-particle strength to over 3 MeV in excitation energy

    High-Statistics β\u3csup\u3e+\u3c/sup\u3e/EC-Decay Study of \u3csup\u3e122\u3c/sup\u3eXe

    Get PDF
    Low-lying excited states of 122Xe have been studied via the β+/EC decay of 122Cs with the 8π γ-ray spectrometer at the TRIUMF Isotope Separator and Accelerator facility. The data collected have enabled the observation of new in-band transitions in the excited 0+ state bands. In addition, the 2+ members of the second 0+ and third 0+ state bands have been firmly confirmed by angular correlation analysis

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    Probing the low-lying level structure of 94Zr through β¯ decay

    Get PDF
    223-227Low-lying states of 94Zr are populated following b- decay of 94Y, and the emitted g rays from 94Zr are detected using the 8p spectrometer composed of 20 Compton-suppressed HPGe detectors. High- statistics coincidence data have been used for the placement of very weak decay branches in the level scheme. Combining the results of level lifetimes from a previous experiment and the precisely measured branching ratio values of the weak decay branches from the present experiment, it is possible to extract the B(E2) values for all the possible decay branches from a given level. These values are helpful for proper identification of the collective and non-collective states of 94Zr. The experimental findings have been compared with predictions from shell-model calculations with a limited valence space; however, these calculations are inadequate in reproducing all of the measured spectroscopic quantities

    Probing the limit of nuclear existence: Proton emission from 159Re

    Get PDF
    AbstractThe observation of the new nuclide 15975Re84 provides important insights into the evolution of single-particle structure and the mass surface in heavy nuclei beyond the proton drip line. This nuclide, 26 neutrons away from the nearest stable rhenium isotope, was synthesised in the reaction 106Cd(58Ni, p4n) and identified via its proton radioactivity using the ritu gas-filled separator and the great focal-plane spectrometer. Comparisons of the measured proton energy (Ep=1805±20 keV) and decay half-life (t1/2=21±4 μs) with values calculated using the WKB method indicate that the proton is emitted from an h11/2 state. The implications of these results for future experimental investigations into even more proton unbound nuclei using in-flight separation techniques are considered
    corecore