46 research outputs found

    IDENTIFIKASI BAKTERI Escherichia coli, Shigella sp. DAN Staphylococcus aureus SEBAGAI BIOMARKER CEMARAN PADA SUMBER AIR DAERAH STUNTING DI KELURAHAN BELAWAN SICANANG, KECAMATAN MEDAN BELAWAN, MEDAN

    Get PDF
    Stunting ialah gangguan pertumbuhan dan perkembangan anak akibat kekurangan gizi kronis dan infeksi berulang, yang ditandai dengan tinggi badan di bawah standar. Air merupakan sumber daya yang sangat dibutuhkan untuk aktivitas rumah tangga masyarakat, sehingga higienitasnya menjadi perhatian khusus. Cemaran bakteri jenis Escherichia coli enterotoksigenik yang ditransmisikan melalui air dapat meningkatkan resiko stunting pada anak dengan gejala awal diare berkelanjutan. Penelitian ini dilakukan untuk mengidentifikasi biomarker pada sumber air penduduk daerah dengan stunting di Keluruhan Belawan Sicanang, Medan. Biomarker yang digunakan adalah E. coli, Shigella sp., dan Staphylococcus aureus. Metode yang digunakan dalam penelitian ini adalah Most Probable Number (MPN) dan Total Plate Count (TPC). Dari hasil penelitian ini menunjukkan bahwa 2 dari 3 sampel air minum tercemar E. coli., dan 3 dari 3 sampel air bersih tercemar E. coli. Sedangkan, dua biomarker lainnya tidak terdeteksi di semua jenis sampel.Stunting is a disorder of growth and development of children due to chronic malnutrition and repeated infections, which are characterized by below standard height. Water is a kind of resource which required for community household activities,. Therefore, water, sanitation and hygiene become particular concern. Contamination by Enterotoxigenic Escherichia coli that transmitted through water can increase the risk of stunting in children with continuous diarrhea. This research was conducted to identify biomarkers in water sources for local residents with stunting in Belawan Sicanang Village, Medan. The biomarkers used were E. coli, Shigella sp., and Staphylococcus aureus. The method used in this study is the Most Probable Number (MPN) and Total Plate Count (TPC). The results of this study indicated that 2 out of 3 drinking water samples were contaminated with E. coli., and 3 out of 3 clean water samples were contaminated with E. coli. Meanwhile, the other two biomarkers were not detected in all types of samples

    Myc stimulates B lymphocyte differentiation and amplifies calcium signaling

    Get PDF
    Deregulated expression of the Myc family of transcription factors (c-, N-, and L-myc) contributes to the development of many cancers by a mechanism believed to involve the stimulation of cell proliferation and inhibition of differentiation. However, using B cell–specific c-/N-myc double-knockout mice and Eμ-myc transgenic mice bred onto genetic backgrounds (recombinase-activating gene 2−/− and Btk−/− Tec−/−) whereby B cell development is arrested, we show that Myc is necessary to stimulate both proliferation and differentiation in primary B cells. Moreover, Myc expression results in sustained increases in intracellular Ca2+ ([Ca2+]i), which is required for Myc to stimulate B cell proliferation and differentiation. The increase in [Ca2+]i correlates with constitutive nuclear factor of activated T cells (NFAT) nuclear translocation, reduced Ca2+ efflux, and decreased expression of the plasma membrane Ca2+–adenosine triphosphatase (PMCA) efflux pump. Our findings demonstrate a revised model whereby Myc promotes both proliferation and differentiation, in part by a remarkable mechanism whereby Myc amplifies Ca2+ signals, thereby enabling the concurrent expression of Myc- and Ca2+-regulated target genes

    A point mutation in the murine Hem1 gene reveals an essential role for Hematopoietic Protein 1 in lymphopoiesis and innate immunity

    Get PDF
    Hem1 (Hematopoietic protein 1) is a hematopoietic cell-specific member of the Hem family of cytoplasmic adaptor proteins. Orthologues of Hem1 in Dictyostelium discoideum, Drosophila melanogaster, and Caenorhabditis elegans are essential for cytoskeletal reorganization, embryonic cell migration, and morphogenesis. However, the in vivo functions of mammalian Hem1 are not known. Using a chemical mutagenesis strategy in mice to identify novel genes involved in immune cell functions, we positionally cloned a nonsense mutation in the Hem1 gene. Hem1 deficiency results in defective F-actin polymerization and actin capping in lymphocytes and neutrophils caused by loss of the Rac-controlled actin-regulatory WAVE protein complex. T cell development is disrupted in Hem1-deficient mice at the CD4−CD8− (double negative) to CD4+CD8+ (double positive) cell stages, whereas T cell activation and adhesion are impaired. Hem1-deficient neutrophils fail to migrate in response to chemotactic agents and are deficient in their ability to phagocytose bacteria. Remarkably, some Rac-dependent functions, such as Th1 differentiation and nuclear factor κB (NF-κB)–dependent transcription of proinflammatory cytokines proceed normally in Hem1-deficient mice, whereas the production of Th17 cells are enhanced. These results demonstrate that Hem1 is essential for hematopoietic cell development, function, and homeostasis by controlling a distinct pathway leading to cytoskeletal reorganization, whereas NF-κB–dependent transcription proceeds independently of Hem1 and F-actin polymerization

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Immune Suppression Uncovers Endogenous Cytopathic Effects of the Hepatitis B Virus

    No full text
    It is generally accepted that the host's immune response rather than the virus itself is causing the hepatocellular damage seen in acute and chronic hepatitis B virus (HBV) infections. However, in situations of severe immune suppression, chronic HBV patients may develop a considerable degree of liver disease. To examine whether HBV has direct cytopathic effects in severely immune compromised hosts, we have infected severe combined immune deficient mice (uPA-SCID), harboring human liver cells, with HBV. Serologic analysis of the plasma of HBV-infected animals revealed the presence of extremely high amounts of viral genomes and proteins. Histological analysis of the livers of uPA-SCID chimeras infected with HBV for more than 2 months showed that the majority of human hepatocytes had a ground-glass appearance, stained intensely for viral proteins, and showed signs of considerable damage and cell death. This histopathologic pattern closely resembles the picture observed in the livers of immunosuppressed HBV patients. These lesions were not observed in animals infected with HBV for less than 1 month. Ultrastructural analysis of long-term-infected hepatocytes showed a highly increased presence of cylindrical HBsAg structures, core particles, and Dane particles compared to short-term-infected hepatocytes. These long-term-infected hepatocytes also contained elevated amounts of HBV cccDNA. In conclusion, HBV causes dramatic intracellular changes and hepatocellular damage in the human hepatocytes that reside in a severely immune deficient mouse. These lesions show much resemblance to the ones encountered in immunosuppressed chronic HBV patients. Our observations indicate that HBV may be directly cytopathic in conditions of severe immune suppression

    Assessment Of Different Soil Amendment Effects On Tuberose Bulb Quality And Quantity

    No full text
    Abstract: A one year field experiment was conducted to elucidate the effectiveness of different soil organic amendments and chemical fertilizers on tuberose at the Floricultur
    corecore