66 research outputs found

    An EPTAS for Scheduling on Unrelated Machines of Few Different Types

    Full text link
    In the classical problem of scheduling on unrelated parallel machines, a set of jobs has to be assigned to a set of machines. The jobs have a processing time depending on the machine and the goal is to minimize the makespan, that is the maximum machine load. It is well known that this problem is NP-hard and does not allow polynomial time approximation algorithms with approximation guarantees smaller than 1.51.5 unless P==NP. We consider the case that there are only a constant number KK of machine types. Two machines have the same type if all jobs have the same processing time for them. This variant of the problem is strongly NP-hard already for K=1K=1. We present an efficient polynomial time approximation scheme (EPTAS) for the problem, that is, for any ε>0\varepsilon > 0 an assignment with makespan of length at most (1+ε)(1+\varepsilon) times the optimum can be found in polynomial time in the input length and the exponent is independent of 1/ε1/\varepsilon. In particular we achieve a running time of 2O(Klog(K)1εlog41ε)+poly(I)2^{\mathcal{O}(K\log(K) \frac{1}{\varepsilon}\log^4 \frac{1}{\varepsilon})}+\mathrm{poly}(|I|), where I|I| denotes the input length. Furthermore, we study three other problem variants and present an EPTAS for each of them: The Santa Claus problem, where the minimum machine load has to be maximized; the case of scheduling on unrelated parallel machines with a constant number of uniform types, where machines of the same type behave like uniformly related machines; and the multidimensional vector scheduling variant of the problem where both the dimension and the number of machine types are constant. For the Santa Claus problem we achieve the same running time. The results are achieved, using mixed integer linear programming and rounding techniques

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Polynomial Kernels for Weighted Problems

    Full text link
    Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number nn of items. We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs

    Parameterized Complexity of Maximum Edge Colorable Subgraph

    Full text link
    A graph HH is {\em pp-edge colorable} if there is a coloring ψ:E(H){1,2,,p}\psi: E(H) \rightarrow \{1,2,\dots,p\}, such that for distinct uv,vwE(H)uv, vw \in E(H), we have ψ(uv)ψ(vw)\psi(uv) \neq \psi(vw). The {\sc Maximum Edge-Colorable Subgraph} problem takes as input a graph GG and integers ll and pp, and the objective is to find a subgraph HH of GG and a pp-edge-coloring of HH, such that E(H)l|E(H)| \geq l. We study the above problem from the viewpoint of Parameterized Complexity. We obtain \FPT\ algorithms when parameterized by: (1)(1) the vertex cover number of GG, by using {\sc Integer Linear Programming}, and (2)(2) ll, a randomized algorithm via a reduction to \textsc{Rainbow Matching}, and a deterministic algorithm by using color coding, and divide and color. With respect to the parameters p+kp+k, where kk is one of the following: (1)(1) the solution size, ll, (2)(2) the vertex cover number of GG, and (3)(3) l - {\mm}(G), where {\mm}(G) is the size of a maximum matching in GG; we show that the (decision version of the) problem admits a kernel with O(kp)\mathcal{O}(k \cdot p) vertices. Furthermore, we show that there is no kernel of size O(k1ϵf(p))\mathcal{O}(k^{1-\epsilon} \cdot f(p)), for any ϵ>0\epsilon > 0 and computable function ff, unless \NP \subseteq \CONPpoly

    Slide reduction, revisited—filling the gaps in svp approximation

    Get PDF
    We show how to generalize Gama and Nguyen's slide reduction algorithm [STOC '08] for solving the approximate Shortest Vector Problem over lattices (SVP). As a result, we show the fastest provably correct algorithm for δ\delta-approximate SVP for all approximation factors n1/2+εδnO(1)n^{1/2+\varepsilon} \leq \delta \leq n^{O(1)}. This is the range of approximation factors most relevant for cryptography

    Curves over every global field violating the local-global principle

    Get PDF
    There is an algorithm that takes as input a global field k and produces a curve over k violating the local-global principle. Also, given a global field k and a nonnegative integer n, one can effectively construct a curve X over k such that #X(k)=n and X has points over every completion of k.Comment: 5 page

    On the shortness of vectors to be found by the Ideal-SVP quantum algorithm

    Get PDF
    The hardness of finding short vectors in ideals of cyclotomic number fields (hereafter, Ideal-SVP) can serve as a worst-case assumption for numerous efficient cryptosystems, via the average-case problems Ring-SIS and Ring-LWE. For a while, it could be assumed the Ideal-SVP problem was as hard a

    Efficient Ephemeral Elliptic Curve Cryptographic Keys

    Get PDF
    We show how any pair of authenticated users can on-the-fly agree on an elliptic curve group that is unique to their communication session, unpredictable to outside observers, and secure against known attacks. Our proposal is suitable for deployment on constrained devices such as smartphones, allowing them to efficiently generate ephemeral parameters that are unique to any single cryptographic application such as symmetric key agreement. For such applications it thus offers an alternative to long term usage of standardized or otherwise pre-generated elliptic curve parameters, obtaining security against cryptographic attacks aimed at other users, and eliminating the need to trust elliptic curves generated by third parties

    Polyhedra Circuits and Their Applications

    Get PDF
    To better compute the volume and count the lattice points in geometric objects, we propose polyhedral circuits. Each polyhedral circuit characterizes a geometric region in Rd . They can be applied to represent a rich class of geometric objects, which include all polyhedra and the union of a finite number of polyhedron. They can be also used to approximate a large class of d-dimensional manifolds in Rd . Barvinok [3] developed polynomial time algorithms to compute the volume of a rational polyhedron, and to count the number of lattice points in a rational polyhedron in Rd with a fixed dimensional number d. Let d be a fixed dimensional number, TV(d,n) be polynomial time in n to compute the volume of a rational polyhedron, TL(d,n) be polynomial time in n to count the number of lattice points in a rational polyhedron, where n is the total number of linear inequalities from input polyhedra, and TI(d,n) be polynomial time in n to solve integer linear programming problem with n be the total number of input linear inequalities. We develop algorithms to count the number of lattice points in geometric region determined by a polyhedral circuit in O(nd⋅rd(n)⋅TV(d,n)) time and to compute the volume of geometric region determined by a polyhedral circuit in O(n⋅rd(n)⋅TI(d,n)+rd(n)TL(d,n)) time, where rd(n) is the maximum number of atomic regions that n hyperplanes partition Rd . The applications to continuous polyhedra maximum coverage problem, polyhedra maximum lattice coverage problem, polyhedra (1−β) -lattice set cover problem, and (1−β) -continuous polyhedra set cover problem are discussed. We also show the NP-hardness of the geometric version of maximum coverage problem and set cover problem when each set is represented as union of polyhedra
    corecore