
Slide Reduction, Revisited—Filling the Gaps in
SVP Approximation

Divesh Aggarwal1, Jianwei Li2, Phong Q. Nguyen3,4, and Noah
Stephens-Davidowitz5?

1 National University of Singapore. dcsdiva@nus.edu.sg
2 Information Security Group, Royal Holloway, University of London.

lijianweithu@sina.com
3 Inria Paris, France. pnguyen@inria.fr

4 Département d’informatique de l’ENS, ENS, CNRS, PSL University, Paris, France.
5 Cornell University. noahsd@gmail.com

Abstract. We show how to generalize Gama and Nguyen’s slide reduc-
tion algorithm [STOC ’08] for solving the approximate Shortest Vector
Problem over lattices (SVP) to allow for arbitrary block sizes, rather
than just block sizes that divide the rank n of the lattice. This leads
to significantly better running times for most approximation factors. We
accomplish this by combining slide reduction with the DBKZ algorithm
of Micciancio and Walter [Eurocrypt ’16].
We also show a different algorithm that works when the block size is
quite large—at least half the total rank. This yields the first non-trivial
algorithm for sublinear approximation factors.
Together with some additional optimizations, these results yield signifi-
cantly faster provably correct algorithms for δ-approximate SVP for all
approximation factors n1/2+ε ≤ δ ≤ nO(1), which is the regime most rel-
evant for cryptography. For the specific values of δ = n1−ε and δ = n2−ε,
we improve the exponent in the running time by a factor of 2 and a factor
of 1.5 respectively.

Keywords: Lattice Reduction · Slide Reduction · DBKZ · SVP.

1 Introduction

A lattice L ⊂ Rm is the set of integer linear combinations

L := L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z}
? The first author was partially funded by the Singapore Ministry of Education and

the National Research Foundation under grant R-710-000-012-135, and supported
by the grant MOE2019-T2-1-145 “Foundations of quantum-safe cryptography”. The
second author was funded by EPSRC grant EP/S020330/1. This project has received
funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 885394).
Parts of this work were done while the fourth author was visiting the Massachusetts
Institute of Technology, the Centre for Quantum Technologies at the National Uni-
versity of Singapore, and the Simons Institute in Berkeley.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/334431198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

of linearly independent basis vectors B = (b1, . . . , bn) ∈ Rm×n. We call n the
rank of the lattice.

The Shortest Vector Problem (SVP) is the computational search problem in
which the input is (a basis for) a lattice L ⊆ Zm, and the goal is to output a non-
zero lattice vector y ∈ L with minimal length, ‖y‖ = λ1(L) := minx∈L 6=0

‖x‖.
For δ ≥ 1, the δ-approximate variant of SVP (δ-SVP) is the relaxation of this
problem in which any non-zero lattice vector y ∈ L 6=0 with ‖y‖ ≤ δ · λ1(L) is a
valid solution.

A closely related problem is δ-Hermite SVP (δ-HSVP, sometimes also called
Minkowski SVP), which asks us to find a non-zero lattice vector y ∈ L6=0 with
‖y‖ ≤ δ · vol(L)1/n, where vol(L) := det(BTB)1/2 is the covolume of the lattice.
Hermite’s constant γn is (the square of) the minimal possible approximation
factor that can be achieved in the worst case. I.e.,

γn := sup
λ1(L)2

vol(L)2/n
,

where the supremum is over lattices L ⊂ Rn with full rank n. Hermite’s con-
stant is only known exactly for 1 ≤ n ≤ 8 and n = 24, but it is known to be
asymptotically linear in n, i.e., γn = Θ(n). HSVP and Hermite’s constant play
a large role in algorithms for δ-SVP.

Starting with the celebrated work of Lenstra, Lenstra, and Lovász in 1982
[16], algorithms for solving δ-(H)SVP for a wide range of parameters δ have found
innumerable applications, including factoring polynomials over the rationals [16],
integer programming [17, 15, 7], cryptanalysis [37, 30, 14, 26], etc. More recently,
many cryptographic primitives have been constructed whose security is based
on the (worst-case) hardness of δ-SVP or closely related lattice problems [3,
34, 12, 32, 31]. Such lattice-based cryptographic constructions are likely to be
used on massive scales (e.g., as part of the TLS protocol) in the not-too-distant
future [29], and in practice, the security of these constructions depends on the
fastest algorithms for δ-(H)SVP, typically for δ = poly(n).

Work on δ-(H)SVP has followed two distinct tracks. There has been a long
line of work showing progressively faster algorithms for exact SVP (i.e., δ =
1) [15, 4, 28, 33, 23]. However, even the fastest such algorithm (with proven
correctness) runs in time 2n+o(n) [2, 1]. So, these algorithms are only useful for
rather small n.

This paper is part of a separate line of work on basis reduction algorithms [16,
35, 36, 11, 9, 13, 24]. (See [27] and [24] for a much more complete list of works on
basis reduction.) At a high level, these are reductions from δ-(H)SVP on lattices
with rank n to exact SVP on lattices with rank k ≤ n. More specifically, these
algorithms divide a basis B into projected blocks B[i,i+k−1] with block size k,
where

B[i,j] = (πi(bi), πi(bi+1), . . . , πi(bj))

and πi is the orthogonal projection onto the subspace orthogonal to b1, . . . , bi−1.
Basis reduction algorithms use their SVP oracle to find short vectors in these
(low-rank) blocks and incorporate these short vectors into the lattice basis B.

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 3

By doing this repeatedly (at most poly(n, log ‖B‖) times) with a cleverly chosen
sequence of blocks, such algorithms progressively improve the “quality” of the
basis B until b1 is a solution to δ-(H)SVP for some δ ≥ 1. The goal, of course,
is to take the block size k to be small enough that we can actually run an
exact algorithm on lattices with rank k in reasonable time while still achieving
a relatively good approximation factor δ.

For HSVP, the DBKZ algorithm due to Micciancio and Walter yields the
best proven approximation factor for all ranks n and block sizes k [24], which
was previously obtained by [9] only when n is divisible by k. Specifically, the
approximation factor corresponds to Mordell’s inequality:

δMW,H := γ
n−1

2(k−1)

k . (1)

(Recall that γk = Θ(k) is Hermite’s constant. Here and throughout the intro-
duction, we have left out low-order factors that can be made arbitrarily close to
one.) Using a result due to Lovász [22], this can be converted into an algorithm
for δ2MW,H -SVP. However, the slide reduction algorithm of Gama and Nguyen [9]
achieves a better approximation factor for SVP. It yields

δGN,H := γ
dnek−1

2(k−1)

k δGN,S := γ
dnek−k

k−1

k , (2)

for HSVP and SVP respectively, where we write dnek := k · dn/ke for n rounded
up to the nearest multiple of k. (We have included the result for HSVP in Eq. (2)
for completeness, though it is clearly no better than Eq. (1).)

The discontinuous approximation factor in Eq. (2) is the result of an unfortu-
nate limitation of slide reduction: it only works when the block size k divides the
rank n. If n is not divisible by k, then we must artificially pad our basis so that it
has rank dnek, which results in the rather odd expressions in Eq. (2). Of course,
for n � k, this rounding has little effect on the approximation factor. But, for
cryptographic applications, we are interested in small polynomial approximation
factors δ ≈ nc for relatively small constants c, i.e., in the case when k = Θ(n).
For such values of k and n, this rounding operation can cost us a constant factor
in the exponent of the approximation factor, essentially changing nc to ndce.
Such constants in the exponent have a large effect on the theoretical security of
lattice-based cryptography.6

1.1 Our results

Our first main contribution is a generalization of Gama and Nguyen’s slide reduc-
tion [9] without the limitation that the rank n must be a multiple of the block
size k. Indeed, we achieve exactly the approximation factor shown in Eq. (2)
without any rounding, as we show below.

6 The concrete security of lattice-based cryptography is assessed using HSVP and
a heuristic version of Eq. (2) where Hermite’s constant is replaced by a Gaussian
heuristic estimate. In this work, we restrict our attention to what we can prove, and
we focus on SVP rather than HSVP.

4 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

As a very small additional contribution, we allow for the possibility that the
underlying SVP algorithm for lattices with rank k only solves δ-approximate
SVP for some δ > 1. This technique was already known to folklore and used
in practice, and the proof requires no new ideas. Nevertheless, we believe that
this work is the first to formally show that a δ-SVP algorithm suffices and to
compute the exact dependence on δ. (This minor change proves quite useful when
we instantiate our δ-SVP subroutine with the 20.802k-time δ-SVP algorithm for
some large constant δ � 1 due to Liu, Wang, Xu, and Zheng [21, 38]. See Table 1
and Figure 1.)

Theorem 1 (Informal, slide reduction for n ≥ 2k). For any approximation
factor δ ≥ 1 and block size k := k(n) ≥ 2, there is an efficient reduction from
δH-HSVP and δS-SVP on lattices with rank n ≥ 2k to δ-SVP on lattices with
rank k, where

δH := (δ2γk)
n−1

2(k−1) δS := δ(δ2γk)
n−k
k−1 .

Notice in particular that this matches Eq. (2) in the case when δ = 1 and
k divides n. (This is not surprising, since our algorithm is essentially identical
to the original algorithm from [9] in this case.) Theorem 1 also matches the
approximation factor for HSVP achieved by [24], as shown in Eq. (1), so that
the best (proven) approximation factor for both problems is now achieved by a
single algorithm: in other words, we get the best of both algorithms [9] and [24].

However, Theorem 1 only applies for n ≥ 2k. Our second main contribution
is an algorithm that works for k ≤ n ≤ 2k. To our knowledge, this is the
first algorithm that provably achieves sublinear approximation factors for SVP
and is asymptotically faster than, say, the fastest algorithm for O(1)-SVP. (We
overcame a small barrier here. See the discussion in Section 3.)

Theorem 2 (Informal, slide reduction for n ≤ 2k). For any approximation
factor δ ≥ 1 and block size k ∈ [n/2, n], there is an efficient reduction from
δS-SVP on lattices with rank n to δ-SVP on lattices with rank k, where

δS := δ2
√
γk(δ2γq)

q+1
q−1 ·

n−k
2k . δ(δ2γk)

n
2k ,

and q := n− k ≤ k.

Together, these algorithms yield the asymptotically fastest proven running
times for δ-SVP for all approximation factors n1/2+ε ≤ δ ≤ nO(1)—with a
particularly large improvement when δ = nc for 1/2 < c < 1 or for any c
slightly smaller than an integer. Table 1 and Figure 1 summarize the current
state of the art. For example, one can solve O(n1.99)-SVP in 20.269n+o(n)-time
and O(n0.99)-SVP in 20.405n+o(n) instead of the previously best 20.401n+o(n)-time
and 20.802n+o(n), respectively.

It is worthwhile to mention that, though our focus is on provable algorithms,
any heuristic algorithm can be plugged into our reduction giving us the same
improvement for these algorithms (see Table 2). Our reduction just shows how
to “recycle” one’s favourite algorithm for exact (or near-exact) SVP to tackle

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 5

Approximation factor Previous best Folklore This work

Exact 2n [2] — —
Ω(1) ≤ δ ≤

√
n 20.802n [38] — —

nc for c ∈ [1
2
, 1) 20.802n [38] — 2

0.802n
2c [*]+[38]

nc for c ≥ 1 2
n

bc+1c [9]+[2] 2
0.802n
bc+1c [9]+[38] 2

0.802n
c+1 [*]+[38]

Table 1: Provable algorithms for solving SVP. We write [A]+[B] to denote the
algorithm that uses basis reduction from [A] with the exact/near-exact SVP al-
gorithm from [B], and we write [*] for this work. The“folklore”column represents
a result that was likely known to many experts in the field but apparently never
published.

Approximation factor Previous best This work

1 ≤ δ ≤
√
n 20.292n [5] —

nc for c ∈ [1
2
, 1) 20.292n [5] 2

0.292n
2c [*]+[5]

nc for c ≥ 1 2
0.292n
bc+1c [9]+[5] 2

0.292n
c+1 [*]+[5]

Table 2: Heuristic algorithms for solving SVP.

higher dimension, provided that one is interested in approximating SVP rather
than HSVP. Our results further our understanding of the hardness of SVP but
they do not impact usual security estimates, such as those of lattice-based candi-
dates to NIST’s post-quantum standardization: this is because current security
estimates actually rely on HSVP estimates, following [10]. The problem of ap-
proximating SVP is essentially the same as that of approximating HSVP, except
for lattices with an extremely small first minimum: such lattices exist but typi-
cally do not arise in real-world cryptographic constructions (see [10, §3.2]). For
the same reason, implementing our algorithm has limited value in practice at the
moment: running the algorithm would only be meaningful if one was interested
in approximating SVP on ad-hoc lattices with an extremely small first minimum.

1.2 Our techniques

We first briefly recall some of the details of Gama and Nguyen’s slide reduction.
Slide reduction divides the basis B = (b1, . . . , bn) ∈ Rm×n evenly into disjoint
“primal blocks” B[ik+1,(i+1)k] of length k. (Notice that this already requires n
to be divisible by k.) It also defines certain “dual blocks” B[ik+2,(i+1)k+1], which
are the primal blocks shifted one to the right. The algorithm then tries to simul-
taneously satisfy certain primal and dual conditions on these blocks. Namely,
it tries to SVP-reduce each primal block—i.e., it tries to make the first vector
in the block b∗ik+1 a shortest vector in L(B[ik+1,(i+1)k]), where b∗j := πj(bj). Si-
multaneously, it tries to dual SVP-reduce (DSVP-reduce) the dual blocks. (See
Section 2.3 for the definition of DSVP reduction.) We call a basis that satisfies
all of these conditions simultaneously slide-reduced.

An SVP oracle for lattices with rank k is sufficient to enforce all primal
conditions or all dual conditions separately. (E.g., we can enforce the primal

6 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

[GN08]+[ADRS15]

[GN08]+[WLW15]

This work+[WLW15]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
logn (δ)

0.2

0.4

0.6

0.8

log2(T)

n

Fig. 1: Provable running time T as a function of approximation factor δ for δ-
SVP. The y-axis is log2(T)/n, and the x-axis is logn δ.

conditions by simply finding a shortest non-zero vector in each primal block
and including this vector in an updated basis for the block.) Furthermore, if all
primal and dual conditions hold simultaneously, then ‖b1‖ ≤ δGN,Sλ1(L) with
δGN,S as in Eq. (2), so that ‖b1‖ yields a solution to δGN,S-SVP. This follows
from repeated application of a “gluing” lemma on such bases, which shows how
to “glue together” two reduced block to obtain a larger reduced block. (See
Lemma 1.) Finally, Gama and Nguyen showed that, if we alternate between SVP-
reducing the primal blocks and DSVP-reducing the dual blocks, then the basis
will converge quite rapidly to a slide-reduced basis (up to some small slack) [9].
Combining all of these facts together yields the main result in [9]. (See Section 4.)

The case n > 2k. We wish to extend slide reduction to the case when n = pk+q
for 1 ≤ q < k. So, intuitively, we have to decide what to do with “the extra
q vectors in the basis.” To answer this, we exploit a “gluing” property, which
is implicit in LLL and slide reduction, but which we make explicit: given an
integer ` ∈ {1, . . . , n}, any basis B of a lattice L defines two blocks B1 = B[1,`]

and B2 = B[`+1,n]. The first block B1 is a basis of a (primitive) sublattice L1 of
L, and the second block B2 is a basis of another lattice L2 which can be thought
as the quotient L/L1. Intuitively, the basis B glues the two blocks B1 and B2

together: a gluing property (Lemma 1) provides sufficient conditions on the two
blocks B1 and B2 to guarantee that the basis B is (H)SVP-reduced. Crucially,
the gluing property shows that there is an asymmetry between B1 and B2: B can
be SVP-reduced without requiring both B1 and B2 to be SVP-reduced. Namely,
it suffices that B1 is HSVP-reduced, B2 is SVP-reduced together with a gluing
condition relating the first vectors of B1 and B2. 7

7 We are ignoring a certain degenerate case here for simplicity. Namely, if all short
vectors happen to lie in the span of the first block, and these vectors happen to be
very short relative to the volume of the first block, then calling an HSVP oracle on

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 7

Reduced Blocks

HSVP DHSVP SVP DSVP

b1

b∗
k+q+1

b∗
2k+q+1

b∗
(p−1)k+q+1

b∗
pk+q = b∗

n

b1

b∗
q+1

b∗
k

b∗
k+q = b∗

n

Fig. 2: Slide reduction of an upper-triangular matrix for n = pk + q ≥ 2k (left)
and n = k + q ≤ 2k (right). (The original notion of slide reduction in [9] used
only SVP-reduced and DSVP-reduced blocks of fixed size k.)

The HSVP reduction of B1 can be handled by the algorithm from [24], ir-
respective of the rank of B1. The SVP reduction of B2 can be handled by our
SVP oracle if the rank of B2 is chosen to be k, or by slide reduction [9] if the
rank of B2 is chosen to be a multiple of k. Finally, the gluing condition can be
achieved by duality, by reusing the main idea of [9]. Thus, “the extra q vectors
in the basis” can simply be included in the first block B1.

Interestingly, the HSVP approximation factor achieved by [24] (which we use
for B1) and the SVP approximation factor achieved by [9] (which we can use
for B2) are exactly what we need to apply our gluing lemma. (This is not a
coincidence, as we explain in Section 4.) The result is Theorem 1.

The case n < 2k. For n = k+q < 2k, the above idea cannot work. In particular,
a “big block” of size k + q in this case would be our entire basis! So, instead of
working with one big block and some “regular blocks” of size k, we work with a
“small block” of size q and one regular block of size k. We then simply perform
slide reduction with (primal) blocks B[1,q] and B[q+1,n] = B[n−k+1,n]. If we were
to stop here, we would achieve an approximation factor of roughly γq (see [20,
Th. 4.3.1]), which for q = Θ(k) is essentially the same as the approximation

the first block might not be sufficient to solve approximate SVP. Of course, if we
know a low-dimensional subspace that contains the shortest non-zero vector, then
finding short lattice vectors is much easier. This degenerate case is therefore easily
handled separately (but it does in fact need to be handled separately).

8 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

factor of roughly γk that we get when the rank is 2k. I.e., we would essentially
“pay for two blocks of length k,” even though one block has size q < k.

However, we notice that a slide-reduced basis guarantees more than just a
short first vector. It also promises a very strong bound on vol(B[1,q]). In particu-
lar, since q < k and since we have access to an oracle for lattices with rank k, it is
natural to try to extend this small block B[1,q] with low volume to a larger block
B[1,k] of length k that still has low volume. Indeed, we can use our SVP oracle to
guarantee that B[q+1,k] consists of relatively short vectors so that vol(B[q+1,k])
is relatively small as well. (Formally, we SVP-reduce B[i,n] for i ∈ [q + 1, k].
Again, we are ignoring a certain degenerate case, as in Footnote 7.) This allows
us to upper bound vol(B[1,k]) = vol(B[1,q]) · vol(B[q+1,k]), which implies that
λ1(L(B[1,k])) is relatively short. We can therefore find a short vector by making
an additional SVP oracle call on L(B[1,k]). (Micciancio and Walter used a similar
idea in [24].)

1.3 Open questions and directions for future work

Table 1 suggests an obvious open question: can we find a non-trivial basis re-
duction algorithm that provably solves δ-SVP for δ ≤ O(

√
n)? More formally,

can we reduce O(
√
n)-SVP on lattices with rank n to exact SVP on lattices with

rank k = cn for some constant c < 1. Our current proof techniques seem to
run into a fundamental barrier here in that they seem more-or-less incapable of
achieving δ � √γk. This setting is interesting in practice, as many record lattice
computations use block reduction with k ≥ n/2 as a subroutine, such as [6].
(One can provably achieve approximation factors δ � √γk when k = (1−o(1))n
with a bit of work,8 but it is not clear if these extreme parameters are useful.)

Next, we recall that this work shows how to exploit the existing very impres-
sive algorithms for HSVP (in particular, DBKZ [24]) to obtain better algorithms
for SVP. This suggests two closely related questions for future work: (1) can we
find better algorithms for HSVP (e.g., for δ-HSVP with δ ≈ √γn—i.e., “near-
exact” HSVP); and (2) where else can we profitably replace SVP oracles with
HSVP oracles? Indeed, most of our analysis (and the analysis of other basis
reduction algorithms) treats the δ-SVP oracle as a δ

√
γk-HSVP oracle. We iden-

tified one way to exploit this to actually get a faster algorithm, but perhaps more
can be done here—particularly if we find faster algorithms for HSVP.

Finally, we note that we present two distinct (though similar) algorithms:
one for lattices with rank n ≤ 2k and one for lattices with rank n ≥ 2k. It is
natural to ask whether there is a single algorithm that works in both regimes.
Perhaps work on this question could even lead to better approximation factors.

8 For example, it is immediate from the proof of Theorem 5 that the (very simple)
notion of a slide-reduced basis for n ≤ 2k in Definition 1 is already enough to obtain
δ ≈ γn−k ≈ n−k. So, for n . k+

√
k, this already achieves δ .

√
n. With a bit more

work, one can show that an extra oracle call like the one used in Corollary 1 can yield
a still better approximation factor in this rather extreme setting of k = (1− o(1))n.

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 9

2 Preliminaries

We denote column vectors x ∈ Rm by bold lower-case letters. Matrices B ∈
Rm×n are denoted by bold upper-case letters, and we often think of a matrix as
a list of column vectors, B = (b1, . . . , bn). For a matrix B = (b1, . . . ,bn) with n
linearly independent columns, we write L(B) := {z1b1+ · · ·+znbn : zi ∈ Z} for
the lattice generated by B and ‖B‖ = max{‖b1‖, . . . , ‖bn‖} for the maximum
norm of a column. We often implicitly assume thatm ≥ n and that a basis matrix
B ∈ Rm×n has rank n (i.e., that the columns of B are linearly independent). We
use the notation log := log2 to mean the logarithm with base two.

2.1 Lattices

For any lattice L, its dual lattice is

L× = {w ∈ span(L) : 〈w,y〉 ∈ Z for all y ∈ L} .

If B ∈ Rm×n is a basis of L, then L× has basis B× := B(BTB)−1, called the
dual basis of B. The reversed dual basis B−s of B is simply B× with its columns
in reversed order [8].

2.2 Gram-Schmidt orthogonalization

For a basis B = (b1, . . . , bn) ∈ Rm×n, we associate a sequence of projec-
tions πi := π{b1,...,bi−1}⊥ . Here, πW⊥ means the orthogonal projection onto the

subspace W⊥ orthogonal to W . As in [9], B[i,j] denotes the projected block
(πi(bi), πi(bi+1), . . . , πi(bj)).

We also associate to B its Gram-Schmidt orthogonalization (GSO) B∗ :=
(b∗1, . . . ,b

∗
n), where b∗i := πi(bi) = bi −

∑
j<i µi,jb

∗
j , and µi,j = 〈bi, b∗j 〉/‖b∗j‖2.

We say that B is size-reduced if |µi,j | ≤ 1
2 for all i 6= j: then ‖B‖ ≤

√
n‖B∗‖.

Transforming a basis into this form without modifying L(B) or B∗ is called size
reduction, and this can be done easily and efficiently.

2.3 Lattice basis reduction

LLL reduction. Let B = (b1, . . . ,bn) be a size-reduced basis. For ε ∈ [0, 1],
we say that B is ε-LLL-reduced [16] if every rank-two projected block B[i,i+1]

satisfies Lovász’s condition: ‖b∗i ‖2 ≤ (1+ε)‖µi,i−1b
∗
i−1 +b∗i ‖2 for 1 < i ≤ n. For

ε ≥ 1/poly(n), one can efficiently compute an ε-LLL-reduced basis for a given
lattice.

SVP reduction and its extensions. Let B = (b1, . . . ,bn) be a basis of a lattice
L and δ ≥ 1 be an approximation factor.

We say that B is δ-SVP-reduced if ‖b1‖ ≤ δ · λ1(L). Similarly, we say that
B is δ-HSVP-reduced if ‖b1‖ ≤ δ · vol(L)1/n.

10 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

B is δ-DSVP-reduced [9] (where D stands for dual) if the reversed dual basis
B−s is δ-SVP-reduced and B is 1

3 -LLL-reduced. Similarly, we say that B is
δ-DHSVP-reduced if B−s is δ-HSVP-reduced.

The existence of such δ-DSVP-reduced bases is guaranteed by a classical
property of LLL that ‖b∗n‖ never decreases during the LLL-reduction process
[16].

We can efficiently compute a δ-(D)SVP-reduced basis for a given rank n
lattice L ⊆ Zm with access to an oracle for δ-SVP on lattices with rank at most n.
Furthermore, given a basis B = (b1, . . . , bn) ∈ Zm×n of L and an index i ∈ [1, n−
k + 1], we can use a δ-SVP oracle for lattices with rank at most k to efficiently
compute a size-reduced basis C = (b1, . . . , bi−1, ci, . . . , ci+k−1, bi+k, . . . , bn) of
L such that the block C[i,i+k−1] is δ-SVP reduced or δ-DSVP reduced:
– If C[i,i+k−1] is δ-SVP-reduced, the procedures in [9, 24, 19] equipped with
δ-SVP-oracle ensure that ‖C∗‖ ≤ ‖B∗‖;

– If C[i,i+k−1] is δ-DSVP-reduced, the inherent LLL reduction implies ‖C∗‖ ≤
2k‖B∗‖. Indeed, the GSO of C[i,i+k−1] satisfies

‖(C[i,i+k−1])
∗‖ ≤ 2k/2λk(L(C[i,i+k−1]))

(by [16, p. 518, Line 27]) and λk(L(C[i,i+k−1])) ≤
√
k‖B∗‖. Here, λk(·) de-

notes the k-th minimum.
With size-reduction, we can iteratively perform poly(n, log ‖B‖) many such

operations efficiently. In particular, doing so will not increase ‖B∗‖ by more
than a factor of 2poly(n,log ‖B‖), and therefore the same is true of ‖B‖. That is,
all intermediate entries and the total cost during execution (excluding oracle
queries) remain polynomially bounded in the initial input size; See, e.g., [9, 18]
for the evidence. Therefore, to bound the running time of basis reduction, it
suffices to bound the number of calls to these block reduction subprocedures.

Twin reduction and gluing. We define the following notion, which was implicit
in [9] and will arise repeatedly in our proofs. B = (b1, . . . , bd+1) is δ-twin-reduced
if B[1,d] is δ-HSVP-reduced and B[2,d+1] is δ-DHSVP-reduced. The usefulness of
twin reduction is illustrated by the following fact, which is the key idea behind
Gama and Nguyen’s slide reduction (and is remarkably simple in hindsight).

Fact 3. If B := (b1, . . . , bd+1) ∈ Rm×(d+1) is δ-twin-reduced, then

‖b1‖ ≤ δ2d/(d−1)‖b∗d+1‖ . (3)

Furthermore,

δ−d/(d−1)‖b1‖ ≤ vol(B)1/(d+1) ≤ δd/(d−1)‖b∗d+1‖ . (4)

Proof. By definition, we have ‖b1‖d ≤ δdvol(B[1,d]), which is equivalent to

‖b1‖d−1 ≤ δdvol(B[2,d]) .

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 11

Similarly,
vol(B[2,d]) ≤ δd‖b∗d+1‖d−1 .

Combining these two inequalities yields Eq. (3).
Finally, we have ‖b1‖d‖b∗d+1‖ ≤ δdvol(B). Applying Eq. (3) implies the first

inequality in Eq. (4), and similar analysis yields the second inequality.

The following gluing lemma, which is more-or-less implicit in prior work,
shows conditions on the blocks B[1,d] and B[d+1,n] that are sufficient to imply
(H)SVP reduction of the full basis B. Notice in particular that the decay of the
Gram-Schmidt vectors guaranteed by Eq. (3) is what is needed for Item 2 of the
lemma below, when η = δ1/(d−1). And, with this same choice of η, the HSVP
reduction requirement on B[1,d] in Fact 3 is the same as the one in Item 2 of
Lemma 1.

Lemma 1 (The gluing lemma). Let B := (b1, . . . , bn) ∈ Rm×n, α, β, η ≥ 1,
and 1 ≤ d ≤ n.
1. If B[d+1,n] is β-SVP-reduced, ‖b1‖ ≤ α‖b∗d+1‖, and λ1(L(B)) < λ1(L(B[1,d])),

then B is αβ-SVP-reduced.
2. If B[1,d] is ηd−1-HSVP-reduced, B[d+1,n] is ηn−d−1-HSVP-reduced, and ‖b1‖ ≤

η2d‖b∗d+1‖, then B is ηn−1-HSVP-reduced.

Proof. For Item 1, since λ1(L(B)) < λ1(L(B[1,d])), there exists a shortest non-
zero vector u ∈ L(B) with ‖u‖ = λ1(L(B)) and πd(u) 6= 0. Since B[d+1,n] is
β-SVP-reduced, it follows that ‖b∗d+1‖/β ≤ ‖πd(u)‖ ≤ ‖u‖ = λ1(L(B)). Finally,
we have ‖b1‖ ≤ α‖b∗d+1‖ ≤ αβλ1(L) as needed.

Turning to Item 2, we note that the HSVP conditions imply that ‖b1‖d ≤
ηd(d−1)vol(B[1,d]) and ‖b∗d+1‖n−d ≤ η(n−d)(n−d−1)vol(B[d+1,n]). Using the bound
on ‖b1‖ relative to ‖b∗d+1‖, we have

‖b1‖n ≤ η2d(n−d)‖b1‖d · ‖b∗d+1‖n−d

≤ η2(n−d)d+d(d−1)+(n−d)(n−d−1)vol(B)

= ηn(n−1)vol(B) ,

as needed.

2.4 The Micciancio-Walter DBKZ algorithm

We recall Micciancio and Walter’s elegant DBKZ algorithm [24], as we will need
it later. Formally, we slightly generalize DBKZ by allowing for the use of a δ-
SVP-oracle. We provide only a high-level sketch of the proof of correctness, as
the full proof is the same as the proof in [24], with Hermite’s constant γk replaced
by δ2γk.

Theorem 4. For integers n > k ≥ 2, an approximation factor 1 ≤ δ ≤ 2k,
an input basis B0 ∈ Zm×n for a lattice L ⊆ Zm, and N := d(2n2/(k − 1)2) ·

12 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

Algorithm 1 The Micciancio-Walter DBKZ algorithm [24, Algorithm 1]

Input: A block size k ≥ 2, number of tours N , a basis B = (b1, · · · ,bn) ∈ Zm×n, and
access to a δ-SVP oracle for lattices with rank k.

Output: A new basis of L(B).
1: for ` = 1 to N do
2: for i = 1 to n− k do
3: δ-SVP-reduce B[i,i+k−1].
4: end for
5: for j = n− k + 1 to 1 do
6: δ-DSVP-reduce B[j,j+k−1]

7: end for
8: end for
9: δ-SVP-reduce B[1,k].

10: return B.

log(n log(5‖B0‖)/ε)e for some ε ∈ [2−poly(n), 1], Algorithm 1 outputs a basis B
of L in polynomial time (excluding oracle queries) such that

‖b1‖ ≤ (1 + ε) · (δ2γk)
n−1

2(k−1) vol(L)1/n

by making N · (2n− 2k + 1) + 1 calls to the δ-SVP oracle for lattices with rank
k.

Proof (Proof sketch). We briefly sketch a proof of the theorem, but we out-
source the most technical step to a claim from [24], which was originally proven

in [25]. Let B(`) be the basis immediately after the `th tour, and let x
(`)
i :=

log vol(B
(`)
[1,k+i−1])−

k+i−1
n log vol(L) for i = 1, . . . , n− k. Let

yi :=
(n− k − i+ 1)(k + i− 1)

k − 1
· log(δ

√
γk) for i = 1, . . . , n− k .

By [24, Claim 3] (originally proven in [25]), we have

max
1≤i≤n−k

∣∣x(`)i /yi − 1
∣∣ ≤ (1− ξ) max

1≤i≤n−k

∣∣x(`−1)i /yi − 1
∣∣ ,

where ξ := 1/(1 + n2/(4k(k − 1))) ≥ 4(k − 1)2/(5n2). Furthermore, notice that

max
1≤i≤n−k

∣∣x(0)i /yi − 1
∣∣ ≤ k(n− k) log(5‖B(0)‖)

y1
.

It follows that

x
(N)
1 − y1
y1

≤ (1− ξ)N max
1≤i≤n−k

∣∣x(0)i /yi − 1
∣∣

≤ e−4(k−1)
2N/(5n2) · k(n− k) log(5‖B(0)‖)

y1

≤ k log(1 + ε)

y1
.

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 13

In other words,

vol
(
B

(N)
[1,k]

)
≤ (1 + ε)k · (δ2γk)

(n−k)k
2(k−1) vol(L)k/n .

Notice that the first vector b1 of the output basis is a δ-approximate shortest

vector in L
(
B

(N)
[1,k]

)
. Therefore,

‖b1‖ ≤ δ
√
γk · vol

(
B

(N)
[1,k]

)1/k ≤ (1 + ε)(δ2γk)
n−1

2(k−1) vol(L)1/n ,

as needed.

3 Slide reduction for n ≤ 2k

In this section, we consider a generalization of Gama and Nguyen’s slide reduc-
tion that applies to the case when k < n ≤ 2k [9]. Our definition in this case
is not particularly novel or surprising, as it is essentially identical to Gama and
Nguyen’s except that our blocks are not the same size.9

What is surprising about this definition is that it allows us to achieve sub-
linear approximation factors for SVP when the rank is n = k + q for q = Θ(k).
Before this work, it seemed that approximation factors less than roughly γq ≈ n
could not be achieved using the techniques of slide reduction (or, for that matter,
any other known techniques with formal proofs). Indeed, our slide-reduced basis
only achieves ‖b1‖ . γqλ1(L) (see [20, Th. 4.3.1]), which is the approximation
factor resulting from the gluing lemma, Lemma 1. (This inequality is tight.)
We overcome this barrier by using our additional constraints on the primal to-
gether with some additional properties of slide-reduced bases (namely, Eq. (4))
to bound λ1(L(B[1,k])). Perhaps surprisingly, the resulting bound is much better
than the bound on ‖b1‖, which allows us to find a much shorter vector with an
additional oracle call.

Definition 1 (Slide reduction). Let n = k + q where 1 ≤ q ≤ k are integers.
A basis B of a lattice with rank n is (δ, k)-slide-reduced (with block size k ≥ 2
and approximation factor δ ≥ 1) if it is size-reduced and satisfies the following
set of conditions.

1. Primal conditions: The blocks B[1,q] and B[i,n] for i ∈ [q + 1,max{k, q + 1}]
are δ-SVP-reduced.

2. Dual condition: the block B[2,q+1] is δ-DSVP-reduced.

9 The only difference, apart from the approximation factor δ, is that we use SVP
reduction instead of HKZ reduction for the primal. It is clear from the proof in [9]
that only SVP reduction is required, as was observed in [24]. We do require that
additional blocks B[i,n] for q + 1 ≤ i ≤ k are SVP-reduced, which is quite similar
to simply HKZ-reducing B[q+1,n], but this requirement plays a distinct role in our
analysis, as we discuss below.

14 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

A reader familiar with the slide reduction algorithm from [9] will not be
surprised to learn that such a basis can be found (up to some small slack) using
polynomially many calls to a δ-SVP oracle on lattices with rank at most k. Before
presenting and analyzing the algorithm, we show that such a slide-reduced basis
is in fact useful for approximating SVP with sub-linear factors. (We note in
passing that a slight modification of the proof of Theorem 5 yields a better
result when q = o(k). This does not seem very useful on its own, though, since
when q = o(k), the running times of our best SVP algorithms are essentially the
same for rank k and rank k + q.)

Theorem 5. Let L be a lattice with rank n = k+q where 2 ≤ q ≤ k are integers.
For any δ ≥ 1, if a basis B of L is (δ, k)-slide-reduced, then,

λ1(L(B[1,k])) ≤ δ
√
γk(δ2γq)

q+1
q−1 ·

n−k
2k λ1(L) .

Proof. Let B = (b1, . . . ,bn). We distinguish two cases.

First, suppose that there exists an index i ∈ [q + 1,max{k, q + 1}] such that
‖b∗i ‖ > δλ1(L). Let v be a shortest non-zero vector of L. We claim that πi(v) = 0,
i.e., that v ∈ L(B[1,i−1]). If this is not the case, since B[i,n] is δ-SVP-reduced,
we have that

‖b∗i ‖/δ ≤ ‖πi(v)‖ ≤ ‖v‖ = λ1(L),

which is a contradiction. Thus, we see that v ∈ L(B[1,i−1]) ⊆ L(B[1,k]), and
hence λ1(L(B[1,k])) = λ1(L) (which is much stronger than what we need).

Now, suppose that ‖b∗i ‖ ≤ δλ1(L) for all indices i ∈ [q + 1,max{k, q + 1}].
By definition, the primal and dual conditions imply that B[1,q+1] is δ

√
γq-twin-

reduced. Therefore, by Eq. (4) of Fact 3, we have

vol(B[1,k]) = vol(B[1,q]) ·
k∏

i=q+1

‖b∗i ‖

≤ (δ
√
γq)q(q+1)/(q−1))‖b∗q+1‖q ·

k∏
i=q+1

‖b∗i ‖

≤ (δ2γq)
q+1
q−1 ·

n−k
2 (δλ1(L))k ,

where we have used the assumption that ‖b∗i ‖ ≤ δλ1(L) for all indices i ∈
[q+1,max{k, q+1}] (and by convention we take the product to equal one in the
special case when q = k). By the definition of Hermite’s constant, this implies
that

λ1(L(B[1,k])) ≤
√
γkvol(B[1,k])

1/k ≤ δ√γk(δ2γq)
q+1
q−1 ·

n−k
2k λ1(L) ,

as needed.

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 15

Algorithm 2 The slide reduction algorithm for n ≤ 2k (adapted from [9, Algo-
rithm 1])

Input: Block size k, slack ε > 0, approximation factor δ ≥ 1, a basis B =
(b1, . . . ,bn) ∈ Zm×n of a lattice L with rank n = k + q where 2 ≤ q ≤ k, and
access to a δ-SVP oracle for lattices with rank at most k.

Output: A ((1 + ε)δ, k)-slide-reduced basis of L.
1: while vol(B[1,q])

2 is modified by the loop do
2: δ-SVP-reduce B[1,q].
3: for i = q + 1 to max{k, q + 1} do
4: δ-SVP reduce B[i,n].
5: end for
6: Find a new basis C := (b1, c2, . . . , cq+1, bq+2, . . . , bn) of L by δ-DSVP-reducing

B[2,q+1].
7: if (1 + ε)‖b∗q+1‖ < ‖c∗q+1‖ then
8: B← C.
9: end if

10: end while
11: return B.

3.1 The slide reduction algorithm for n ≤ 2k

We now present our slight generalization of Gama and Nguyen’s slide reduction
algorithm that works for all k + 2 ≤ n ≤ 2k.

Our proof that Algorithm 2 runs in polynomial time (excluding oracle calls)
is essentially identical to the proof in [9].

Theorem 6. For ε ≥ 1/poly(n), Algorithm 2 runs in polynomial time (exclud-
ing oracle calls), makes polynomially many calls to its δ-SVP oracle, and outputs
a ((1 + ε)δ, k)-slide-reduced basis of the input lattice L.

Proof. First, notice that if Algorithm 2 terminates, then its output must be
((1 + ε)δ, k)-slide-reduced. So, we only need to argue that the algorithm runs in
polynomial time (excluding oracle calls).

Let B0 ∈ Zm×n be the input basis and let B ∈ Zm×n denote the current
basis during the execution of the algorithm. As is common in the analysis of
basis reduction algorithms [16, 9, 18], we consider an integral potential of the
form

P (B) := vol(B[1,q])
2 ∈ Z+ .

The initial potential satisfies logP (B0) ≤ 2q · log ‖B0‖, and every operation in
Algorithm 2 either preserves or significantly decreases P (B). More precisely, if
the δ-DSVP-reduction step (i.e., Step 8) occurs, then the potential P (B) de-
creases by a multiplicative factor of at least (1 + ε)2. No other step changes
L(B[1,q]) or P (B).

Therefore, Algorithm 2 updates L(B[1,q]) at most logP (B0)
2 log(1+ε) times, and hence

it makes at most qk log ‖B0‖
log(1+ε) calls to the δ-SVP-oracle. From the complexity state-

ment in Section 2.3, it follows that Algorithm 2 runs efficiently (excluding the
running time of oracle calls).

16 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

Corollary 1. For any constant c ∈ (1/2, 1] and δ := δ(n) ≥ 1, there is an
efficient reduction from O(δ2c+1nc)-SVP on lattices with rank n to δ-SVP on
lattices with rank k := dn/(2c)e.

Proof. On input (a basis for) an integer lattice L ⊆ Zm with rank n, the reduc-
tion first calls Algorithm 2 to compute a ((1 + ε)δ, k)-slide-reduced basis B of
L with, say, ε = 1/n. The reduction then uses its δ-SVP oracle once more on
B[1,k] and returns the resulting nonzero short lattice vector.

It is immediate from Theorem 6 that this reduction is efficient, and by The-
orem 5, the output vector is a δ′-approximate shortest vector, where

δ′ = δ2
√
γk((1 + ε)2δ2γq)

q+1
q−1 ·

n−k
2k ≤ O(δ2c+1nc) ,

as needed.

4 Slide reduction for n ≥ 2k

We now introduce a generalized version of slide reduction for lattices with any
rank n ≥ 2k. As we explained in Section 1.2, at a high level, our generalization
of the definition from [9] is the same as the original, except that (1) our first
block B[1,k+q] is bigger than the others (out of necessity, since we can no longer
divide our basis evenly into disjoint blocks of size k); and (2) we only η-HSVP
reduce the first block (since we cannot afford to δ-SVP reduce a block with size
larger than k). Thus, our notion of slide reduction can be restated as “the first
block and the first dual block are η-(D)HSVP reduced and the rest of the basis
B[k+q+1,n] is slide-reduced in the sense of [9].”10

However, the specific value of η that we choose in our definition below might
look unnatural at first. We first present the definition and then explain where η
comes from.

Definition 2 (Slide reduction). Let n, k, p, q be integers such that n = pk+ q
with p, k ≥ 2 and 0 ≤ q ≤ k− 1, and let δ ≥ 1. A basis B ∈ Rm×n is (δ, k)-slide-
reduced if it is size-reduced and satisfies the following three sets of conditions.
1. Mordell conditions: The block B[1,k+q] is η-HSVP-reduced and the block B[2,k+q+1]

is η-DHSVP-reduced for η := (δ2γk)
k+q−1
2(k−1) .

2. Primal conditions: for all i ∈ [1, p−1], the block B[ik+q+1,(i+1)k+q] is δ-SVP-
reduced.

3. Dual conditions: for all i ∈ [1, p − 2], the block B[ik+q+2,(i+1)k+q+1] is δ-
DSVP-reduced.11

10 Apart from the approximation factor δ, there is one minor difference between our
primal conditions and those of [9]. We only require the primal blocks to be SVP-
reduced, while [9] required them to be HKZ-reduced, which is a stronger condition.
It is clear from the proof in [9] that only SVP reduction is required, as was observed
in [24].

11 When p = 2, there are simply no dual conditions.

Slide Reduction, Revisited—Filling the Gaps in SVP Approximation 17

There are two ways to explain our specific choice of η. Most simply, notice that
the output of the DBKZ algorithm—due to [24] and presented in Section 2.4—is
η-HSVP reduced when the input basis has rank k+q (up to some small slack ε).
In other words, one reason that we choose this value of η is because we actually
can η-HSVP reduce a block of size k+ q efficiently with access to a δ-SVP oracle
for lattices with rank k. If we could do better, then we would in fact obtain a
better algorithm, but we do not know how. Second, this value of η is natural
in this context because it is the choice that “makes the final approximation
factor for HSVP match the approximation factor for the first block.” I.e., the
theorem below shows that when we plug in this value of η, a slide-reduced basis

of rank n is (δ2γk)
n−1

2(k−1) -HSVP, which nicely matches the approximation factor

of η = (δ2γk)
k+q−1
2(k−1) -HSVP that we need for the first block (whose rank is k+ q).

At a technical level, this is captured by Fact 3 and Lemma 1.
Of course, the fact that these two arguments suggest the same value of η is

not a coincidence. Both arguments are essentially disguised proofs of Mordell’s

inequality, which says that γn ≤ γ(n−1)/(k−1)k for 2 ≤ k ≤ n. E.g., with δ = 1 the
primal Mordell condition says that b1 yields a witness to Mordell’s inequality
for B[1,k+q].

Theorem 7. For any δ ≥ 1, k ≥ 2, and n ≥ 2k, if B = (b1, . . . , bn) ∈ Rm×n is
a (δ, k)-slide-reduced basis of a lattice L, then

‖b1‖ ≤ (δ2γk)
n−1

2(k−1) vol(L)1/n . (5)

Furthermore, if λ1(L(B[1,k+q])) > λ1(L) , then

‖b1‖ ≤ δ(δ2γk)
n−k
k−1 λ1(L) , (6)

where 0 ≤ q ≤ k − 1 is such that n = pk + q.

Proof. Let d := k + q. Theorem 9 of Appendix A shows that B[d+1,n] is both

(δ2γk)
n−d−1
2(k−1) -HSVP-reduced and (δ2γk)

n−d−k
(k−1) -SVP-reduced. (We relegate this

theorem and its proof to the appendix because it is essentially just a restate-
ment of [9, Theorem 1], since B[d+1,n] is effectively just a slide-reduced basis in

the original sense of [9].) Furthermore, B[1,d+1] is (δ2γk)
d−1

2(k−1) -twin-reduced, so

that ‖b1‖ ≤ (δ2γk)
d

k−1 ‖b∗d+1‖. Applying Lemma 1 then yields both Eq. (5) and
Eq. (6).

4.1 The slide reduction algorithm for n ≥ 2k

We now present our slight generalization of Gama and Nguyen’s slide reduction
algorithm that works for all n ≥ 2k. Our proof that the algorithm runs in
polynomial time (excluding oracle calls) is essentially identical to the proof in [9].

Theorem 8. For ε ∈ [1/poly(n), 1], Algorithm 3 runs in polynomial time (ex-
cluding oracle calls), makes polynomially many calls to its δ-SVP oracle, and
outputs a ((1 + ε)δ, k)-slide-reduced basis of the input lattice L.

18 D. Aggarwal, and J. Li, P. Q. Nguyen, N. Stephens-Davidowitz

Algorithm 3 The slide-reduction algorithm for n ≥ 2k

Input: Block size k ≥ 2, slack ε > 0, approximation factor δ ≥ 1, basis B =
(b1, . . . ,bn) ∈ Zm×n of a lattice L of rank n = pk + q ≥ 2k for 0 ≤ q ≤ k − 1, and
access to a δ-SVP oracle for lattices with rank k.

Output: A ((1 + ε)δ, k)-slide-reduced basis of L(B).
1: while vol(B[1,ik+q])

2 is modified by the loop for some i ∈ [1, p− 1] do

2: (1 + ε)η-HSVP-reduce B[1,k+q] using Alg. 1 for η := (δ2γk)
k+q−1
2(k−1) .

3: for i = 1 to p− 1 do
4: δ-SVP-reduce B[ik+q+1,(i+1)k+q].
5: end for
6: if B[2,k+q+1] is not (1 + ε)η-DHSVP-reduced then

7: (1 + ε)1/2η-DHSVP-reduce B[2,k+q+1] using Alg. 1.
8: end if
9: for i = 1 to p− 2 do

10: Find a new basis C := (b1, . . . , bik+q+1, cik+q+2, . . . , c(i+1)k+q+1, bik+q+2, . . . , bn)
of L by δ-DSVP-reducing B[ik+q+2,(i+1)k+q+1].

11: if (1 + ε)‖b∗(i+1)k+q+1‖ < ‖c∗(i+1)k+q+1‖ then
12: B← C.
13: end if
14: end for
15: end while
16: return B.

Proof. First, notice that if Algorithm 3 terminates, then its output is ((1+ε)δ, k)-
slide-reduced. So, we only need to argue that the algorithm runs in polynomial
time (excluding oracle calls).

Let B0 ∈ Zm×n be the input basis and let B ∈ Zm×n denote the current
basis during the execution of Algorithm 3. As is common in the analysis of basis
reduction algorithms [16, 9, 18], we consider an integral potential of the form

P (B) :=

p−1∏
i=1

vol(B[1,ik+q])
2 ∈ Z+.

The initial potential satisfies logP (B0) ≤ 2n2 · log ‖B0‖, and every operation
in Algorithm 3 either preserves or significantly decreases P (B). In particular,
the potential is unaffected by the primal steps (i.e., Steps 2 and 4), which leave
vol(B[1,ik+q]) unchanged for all i. The dual steps (i.e., Steps 7 and 12) either
leave vol(B[1,ik+q]) for all i or decrease P (B) by a multiplicative factor of at
least (1 + ε).

Therefore, Algorithm 2 updates vol(B[1,ik+q]) for some i at most logP (B0)/ log(1+
ε) times. Hence, it makes at most 4pn2 log ‖B0‖/ log(1+ε) calls to the SVP ora-
cle in the SVP and DSVP reduction steps (i.e., Steps 4 and 12), and similarly at
most 4n2 log ‖B0‖/ log(1 + ε) calls to Algorithm 1. From the complexity state-
ment in Section 2.3, it follows that Algorithm 2 runs efficiently (excluding the
running time of oracle calls), as needed.

REFERENCES 19

Corollary 2. For any constant c ≥ 1 and δ := δ(n) ≥ 1, there is an efficient
reduction from O(δ2c+1nc)-SVP on lattices with rank n to δ-SVP on lattices with
rank k := bn/(c+ 1)c.

Proof. On input (a basis for) an integer lattice L ⊆ Zm with rank n, the
reduction first calls Algorithm 3 to compute a ((1 + ε)δ, k)-slide-reduced ba-
sis B = (b1, · · · ,bn) of L with, say, ε = 1/n. Then, the reduction uses the
procedure from Corollary 1 on the lattice L(B[1,2k]) with c = 1 (i.e., slide
reduction on a lattice with rank 2k), to find a vector v ∈ L(B[1,2k]) with
0 < ‖v‖ ≤ O(δ3n)λ1(L(B[1,2k])). Finally, the reduction outputs the shorter
of the two vectors b1 and v.

It is immediate from Corollary 1 and Theorem 8 that this reduction is effi-
cient. To prove correctness, we consider two cases.

First, suppose that λ1(L(B[1,k+q])) = λ1(L). Then,

‖v‖ ≤ O(δ3n)λ1(L(B[1,2k])) ≤ O(δ2c+1nc)λ1(L) ,

so that the algorithm will output a O(δ2c+1nc)-approximate shortest vector.
On the other hand, if λ1(L(B[1,k+q])) > λ1(L), then by Theorem 7, we have

‖b1‖ ≤ (1 + ε)δ((1 + ε)2δ2γk)
n−k
k−1 λ1(L) ≤ O(δ2c+1nc) ,

so that the algorithm also outputs a O(δ2c+1nc)-approximate shortest vector in
this case.

References

[1] D. Aggarwal and N. Stephens-Davidowitz. “Just take the average! An em-
barrassingly simple 2n-time algorithm for SVP (and CVP)”. In: SOSA.
http://arxiv.org/abs/1709.01535. 2018.

[2] D. Aggarwal et al. “Solving the Shortest Vector Problem in 2n time via
Discrete Gaussian Sampling”. In: STOC. http://arxiv.org/abs/1412.
7994. 2015.

[3] M. Ajtai. “Generating hard instances of lattice problems”. In: STOC. 1996.
isbn: 978-0-89791-785-8.

[4] M. Ajtai, R. Kumar, and D. Sivakumar.“A sieve algorithm for the Shortest
Lattice Vector Problem”. In: STOC. 2001.

[5] A. Becker et al. “New directions in nearest neighbor searching with appli-
cations to lattice sieving”. In: SODA. 2016.

[6] Y. Chen and P. Q. Nguyen. “Faster algorithms for approximate common
divisors: Breaking fully-homomorphic-encryption challenges over the inte-
gers”. In: EUROCRYPT. 2012. isbn: 978-3-642-29011-4.

[7] D. Dadush, C. Peikert, and S. Vempala. “Enumerative lattice algorithms
in any norm via M -ellipsoid coverings”. In: FOCS. 2011.

[8] N. Gama, N. Howgrave-Graham, and P. Q. Nguyen. “Symplectic lattice
reduction and NTRU”. In: EUROCRYPT. 2006. isbn: 978-3-540-34547-3.

http://arxiv.org/abs/1709.01535
http://arxiv.org/abs/1412.7994
http://arxiv.org/abs/1412.7994

20 REFERENCES

[9] N. Gama and P. Q. Nguyen.“Finding short lattice vectors within Mordell’s
inequality”. In: STOC. 2008. isbn: 978-1-60558-047-0.

[10] N. Gama and P. Q. Nguyen. “Predicting Lattice Reduction”. In: EURO-
CRYPT ’08. 2008.

[11] N. Gama et al. “Rankin’s constant and blockwise lattice reduction”. In:
CRYPTO. 2006. isbn: 978-3-540-37433-6.

[12] C. Gentry, C. Peikert, and V. Vaikuntanathan.“Trapdoors for hard lattices
and new cryptographic constructions”. In: STOC. https://eprint.iacr.
org/2007/432. 2008.

[13] G. Hanrot, X. Pujol, and D. Stehlé.“Analyzing blockwise lattice algorithms
using dynamical systems”. In: CRYPTO. 2011. isbn: 978-3-642-22792-9.

[14] A. Joux and J. Stern. “Lattice reduction: A toolbox for the cryptanalyst”.
In: J. Cryptology 11.3 (1998).

[15] R. Kannan. “Improved algorithms for integer programming and related
lattice problems”. In: STOC. 1983.

[16] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. “Factoring polynomials
with rational coefficients”. In: Mathematische Annalen 261.4 (1982).

[17] H. W. Lenstra Jr. “Integer programming with a fixed number of variables”.
In: Mathematics of Operations Research 8.4 (1983).

[18] J. Li and P. Q. Nguyen.“Approximating the densest sublattice from Rankin’s
inequality”. In: LMS Journal of Computation and Mathematics 17.Special
Issue A (2014). Contributed to ANTS-XI, 2014.

[19] J. Li and P. Q. Nguyen. “Computing a Lattice Basis Revisited”. In: ISSAC.
2019.

[20] J. Li and W. Wei. “Slide reduction, successive minima and several appli-
cations”. In: Bulletin of the Australian Mathematical Society 88 (03 2013),
pp. 390–406.

[21] M. Liu et al. “Shortest lattice vectors in the presence of gaps”. http:

//eprint.iacr.org/2011/139. 2011.
[22] L. Lovász. An algorithmic theory of numbers, graphs and convexity. Society

for Industrial and Applied Mathematics, 1986. isbn: 978-0-89871-203-2.
[23] D. Micciancio and P. Voulgaris. “A deterministic single exponential time

algorithm for most lattice problems based on Voronoi cell computations”.
In: SIAM J. on Computing 42.3 (2013).

[24] D. Micciancio and M. Walter. “Practical, predictable lattice basis reduc-
tion”. In: Eurocrypt. http://eprint.iacr.org/2015/1123. 2016.

[25] A. Neumaier. “Bounding basis reduction properties”. In: Designs, Codes
and Cryptography 84.1 (2017).

[26] P. Q. Nguyen and J. Stern. “The two faces of lattices in cryptology”. In:
CaLC. 2001.

[27] P. Q. Nguyen and B. Vallée, eds. The LLL algorithm: Survey and applica-
tions. Springer-Verlag, 2010. isbn: 978-3-642-02294-4.

[28] P. Q. Nguyen and T. Vidick. “Sieve algorithms for the Shortest Vector
Problem are practical”. In: J. Mathematical Cryptology 2.2 (2008).

https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432
http://eprint.iacr.org/2011/139
http://eprint.iacr.org/2011/139
http://eprint.iacr.org/2015/1123

REFERENCES 21

[29] C. S. D. NIST. Post-quantum cryptography. https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography. 2018.

[30] A. M. Odlyzko. “The rise and fall of knapsack cryptosystems”. In: Cryp-
tology and Computational Number Theory 42 (1990).

[31] C. Peikert. “A decade of lattice cryptography”. In: Foundations and Trends
in Theoretical Computer Science 10.4 (2016).

[32] C. Peikert. “Public-key cryptosystems from the worst-case Shortest Vector
Problem”. In: STOC. 2009.

[33] X. Pujol and D. Stehlé. Solving the Shortest Lattice Vector Problem in time
22.465n. http://eprint.iacr.org/2009/605. 2009.

[34] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: J. ACM 56.6 (2009).

[35] C.-P. Schnorr. “A hierarchy of polynomial time lattice basis reduction al-
gorithms”. In: Theor. Comput. Sci. 53.23 (1987).

[36] C.-P. Schnorr and M. Euchner.“Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Mathmatical Program-
ming 66 (1994).

[37] A. Shamir. “A polynomial-time algorithm for breaking the basic Merkle-
Hellman cryptosystem”. In: IEEE Trans. Inform. Theory 30.5 (1984).

[38] W. Wei, M. Liu, and X. Wang. “Finding shortest lattice vectors in the
presence of gaps”. In: CT-RSA. 2015. isbn: 978-3-319-16715-2.

A Properties of Gama and Nguyen’s slide reduction

In the theorem below, B[d+1,n] is essentially just a slide-reduced basis in the
sense of [9]. So, the following is more-or-less just a restatement of [9, Theorem
1].

Theorem 9. Let B = (b1, . . . , bn) ∈ Rm×n with n = pk+ d for some p ≥ 1 and
d ≥ k be (δ, k)-slide reduced in the sense of Definition 2. Then,

‖b∗d+1‖ ≤ (δ2γk)ik/(k−1)‖b∗ik+d+1‖ for 0 ≤ i ≤ p− 1 , (7)

‖b∗d+1‖ ≤ (δ2γk)
n−d−1
2(k−1) vol(B[d+1,n])

1/(n−d) , and (8)

‖b∗d+1‖ ≤ δ(δ2γk)
n−d−k

k−1 λ1(L(B[d+1,n])) . (9)

Proof. By definition, for each i ∈ [0, p − 2], the block B[ik+d+1,(i+1)k+d+1] is
δ
√
γk-twin-reduced. By Eq. (3) of Fact 3, we see that

‖b∗ik+d+1‖ ≤ (δ
√
γk)2k/(k−1)‖b∗(i+1)k+d+1‖ ,

which implies (7) by induction.
We prove (8) and (9) by induction over p. If p = 1, then both inequalities hold

as B[d+1,n] is δ-SVP reduced by the definition of slide reduction. Now, assume
that Eqs. (8) and (9) hold for some p ≥ 1. Let n = (p+ 1)k+d. Then B satisfies

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
http://eprint.iacr.org/2009/605

22 REFERENCES

the requirements of the theorem with d′ := d + k. Therefore, by the induction
hypothesis, we have

‖b∗d+k+1‖ ≤ (δ2γk)
n−d−k−1

2(k−1) vol(B[d+k+1,n])
1/(n−d−k) , and

‖b∗d+k+1‖ ≤ δ(δ2γk)
n−d−2k

k−1 λ1(L(B[d+k+1,n])) .

Since B[d+1,d+k] is δ
√
γk-HSVP reduced, we may apply Lemma 1.2 with η =

(δ2γk)
1

2(k−1) , which proves (8) for B[d+1,n].
Furthermore, if λ1(L(B[d+1,n])) < λ1(L(B[d+1,d+k])), it follows from Lemma 1.1

that B[d+1,n] is δ′-SVP-reduced for

δ′ = (δ2γk)k/(k−1) · δ(δ2γk)
n−d−2k

k−1 = δ(δ2γk)
n−d−k

k−1 ,

as needed. If not, then λ1(L(B[d+1,n])) = λ1(L(B[d+1,d+k])), and ‖b∗d+1‖ ≤
δλ1(L(B[d+1,n])) because B[d+1,d+k] is δ-SVP reduced. In all cases, we proved
(9). This completes the proof of Theorem 9.

	Slide Reduction, Revisited—Filling the Gaps in SVP Approximation

