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Abstract. The main contribution of this work is an optimized imple-
mentation of the van Oorschot-Wiener (vOW) parallel collision finding
algorithm. As is typical for cryptanalysis against conjectured hard prob-
lems (e. g. factoring or discrete logarithms), challenges can arise in the
implementation that are not captured in the theory, making the per-
formance of the algorithm in practice a crucial element of estimating
security. We present a number of novel improvements, both to generic
instantiations of the vOW algorithm finding collisions in arbitrary func-
tions, and to its instantiation in the context of the supersingular isogeny
key encapsulation (SIKE) protocol, that culminate in an improved clas-
sical cryptanalysis of the computational supersingular isogeny (CSSI)
problem. In particular, we present a scalable implementation that can
be applied to the Round-2 parameter sets of SIKE that can be used to
give confidence in their security levels.
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1 Introduction

The supersingular isogeny key encapsulation (SIKE) proposal [7] – the actively
secure version of Jao and De Feo’s SIDH key exchange [8] – is one of 17 second
round candidate public key encryption or key establishment proposals submit-
ted to the post-quantum cryptography standardization process initiated by the
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U.S. National Institute of Standards and Technology (NIST). It is the only pro-
posal whose security is based on the computational supersingular isogeny (CSSI)
problem. Currently, the best known classical and quantum attacks on the CSSI
problem are generic claw finding attacks: given two functions f : A → C and
g : B → C with domains of equal size, the claw finding problem is to find a pair
(a, b) such that f(a) = g(b). The original security analysis by Jao and De Feo [8,
§5.2] estimates the complexity of the CSSI problem by assuming the optimal
black-box asymptotic complexities for the claw finding problem: classically, it
can be solved in O(|A|+ |B|) time using O(|A|) space. On a quantum computer,
Tani’s algorithm [22] relies on a generalization of Grover’s search algorithm by
Szegedy [21] and uses quantum walks on Johnson graphs to solve the claw finding
problem in O( 3

√
|A||B|) time. Following Jao and De Feo, the SIKE team used

these asymptotics to specify three Round-1 parametrizations that were intended
to meet the requirements for the NIST security categories 1, 3 and 5 defined in
terms of resources needed for AES key search [14, p. 18].

Prior to 2018, the literature on SIDH (starting with Jao and De Feo’s original
paper [8]) has consistently cited a meet-in-the-middle algorithm for claw finding
as the best known classical algorithm for solving the CSSI problem. In 2018,
Adj, Cervantes-Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1]
made a significant step towards a better understanding of the problem’s concrete
classical complexity. They show that, while the meet-in-the-middle algorithm
has the lowest known classical runtime, its storage requirements are so large (for
instances of cryptographic size) that its application is not meaningful in any
reasonable model of cryptanalytic computation. Indeed, the best classical AES
key search algorithms only require a modest amount of storage, so a fair and
correct analysis must take into account the available time/memory trade-offs.
Consequently, Adj et al. fix a conservative upper bound on storage capacity that
is considered “prohibitively costly for the foreseeable future” [1, §5], i.e., 280

units of storage, and analyze the runtime of relevant algorithms subject to this
capacity. They conclude that despite its higher running time, the van Oorschot-
Wiener (vOW) parallel collision finding algorithm [23] has significantly lower
space requirements and is the best classical algorithm for the CSSI problem.
Thus, its concrete complexity should instead be used to assess the security of
SIDH/SIKE against (known) classical attacks. Their analysis ultimately shows
that the SIKE team used rather conservative classical security estimates and
that significantly smaller parameters can be used to achieve the requisite level
of classical security.

Jaques and Schanck [9] provide an in-depth analysis of quantum algorithms
for claw finding applied to the CSSI problem. In particular, they analyse the
complexity of implementing and querying quantum memory, which is needed in
Tani’s algorithm and which previously had not been taken into account in the
quantum security estimates for SIDH/SIKE. Along with Tani’s algorithm, they
also consider a direct application of Grover search [5] to claw finding. Similar
to the classical analysis of Adj et al., they conclude that the SIKE proposal’s
quantum security estimates were too conservative. In fact, Jaques and Schank’s
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analysis shows that the best known quantum algorithms do not achieve a signifi-
cant advantage over the classical vOW algorithm. In some attack scenarios, it is
the classical security that is the limiting factor for achieving a specified security
level. While quantum algorithms promise to be more efficient for attackers with
limited memory, classical vOW outperforms quantum algorithms for attackers
with limited time. Thus, the precise, real-world complexity of the vOW parallel
collision search algorithm is paramount in the discussion of (current and future)
parameters for SIDH/SIKE.

Based on the above cryptanalytic results, the parameter sets in the SIKE
specification were adjusted in Round 2 of the NIST standardization process. The
specification now contains the parameter sets SIKEp434, SIKEp503, SIKEp610
and SIKEp751 targeting the NIST security categories 1, 2, 3 and 5, respectively.

Contributions. We present an implementation of the van Oorschot-Wiener algo-
rithm that is intended to be a step towards a real-world, large-scale cryptanalytic
effort. Our work extends that of Adj et al. by introducing novel improvements to
implementations of the generic vOW collision finding algorithm and improving
the instantiations specific to the contexts of SIDH and SIKE. Besides signifi-
cantly optimizing the efficiency of the underlying finite-field and elliptic-curve
arithmetic by incorporating the state-of-the-art formulas, we present several op-
timizations related to the structure of the isogeny graph.

The source code will be released under a free license. Beyond being able to
reproduce our results, we hope that our C/C++ implementations can function
as the basis for further experiments to assess the security of isogeny-based cryp-
tography, and that they can be used for other applications of the collision finding
algorithm. In fact, we provide two implementations: an optimized C code base
for both generic collision finding as well as solving the CSSI problem, and a
C++ version designed for modularity, and to allow easy porting to alternative
collision finding settings at little cost to efficiency (e. g. for the hybrid attack on
lattice-based schemes [6], symmetric cryptography, or highly distributed setups).

Our extensions and improvements to the vOW implementation and analysis
in [1] include:

– Faster collision checking. One of the main steps in the vOW algorithm is to
check whether a given collision is the golden collision (see §2). Experimen-
tally, our optimized version of generic vOW found that it constitutes close
to 20% of the entire algorithm (aligning with van Oorschot and Wiener’s
analysis [23, §4.2]). We give a novel, much more efficient method, which is
based on a cycle-finding technique by Sedgewick, Szymanski and Yao [18].
It temporarily uses a small amount of local storage (which can be input dy-
namically as a parameter) during the random walks to accelerate collision
checking – see §3.4.

– SIKE-specific optimizations. Although the best algorithm for the general
CSSI problem is generic (i.e. there are no better known algorithms that
exploit its underlying mathematical structure), we take advantage of mul-
tiple optimizations that apply to the concrete instantiations in the SIKE
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specification [7]. Firstly, we show how to exploit the choice of the starting
curve as a subfield curve, by defining random walks on (conjugate) classes
of j-invariants; such a modified walk is analogous to the walk that exploits
the negation map in Pollard’s rho algorithm for the ECDLP [27] – see §3.1.
Secondly, we show how to exploit that, in SIKE, the isomorphism class of
the output curve is not randomized (this possibility was already pointed out
by De Feo, Jao and Plût [3]), by using the leakage of the dual of the final
isogeny – see §3.1. We quantify the precise security loss suffered by these
choices.

– Precomputation. Generic collision finding algorithms like vOW are often im-
plemented to target high-speed symmetric primitives. In contrast to those
applications, for the CSSI problem, the computation of large-degree isogenies
is the overwhelming bottle-neck of the random walks. Therefore, speeding
up the isogeny computations translates directly to a similar speedup of the
entire collision finding process. We show how to exhaust any available local
memory to achieve such speedups via the precomputation of parts of the
isogeny tree – see §3.3.

– Experimental results. For all of the improvements mentioned above, we demon-
strate their feasibility by analyzing the runtime of the implementation. In
doing so, we re-confirm the analyses of van Oorschot and Wiener [23] and
Adj et al. [1] in the context of SIDH (with a factor 2 improvement) and
extend them to SIKE – see Table 1. Furthermore, we go beyond the setting
of small parameters and propose an alternative way of predicting the vOW
runtime for actual Round 2 parameters, in particular SIKEp434, giving an
upper bound on their security level – see §5.1.

2 Preliminaries: van Oorschot-Wiener’s Collision Search

After defining the CSSI problem in §2.1, we describe the classical meet-in-the-
middle claw finding algorithm in §2.2. It is both simpler than, and helps moti-
vate, the description of the vOW parallel collision finding algorithm in §2.3. The
complexity analysis of the generic vOW algorithm is given in §2.4.

2.1 The CSSI Problem

Herein, we restrict to the popular scenario whereby an instance of SIDH/SIKE
is parameterized by a prime p = 2e23e3−1 with 2e2 ≈ 3e3 and e3 � 1; all known
implementations, including those in the SIKE submission, specify a prime of
this form. Since p ≡ 3 mod 4, we fix Fp2 = Fp(i) with i2 + 1 = 0 throughout.
We work with the set of isomorphism classes of supersingular elliptic curves in
characteristic p. There are roughly p/12 such classes, and these are identified
by their Fp2-rational j-invariants [20, p. 146]. Each supersingular j-invariant
belongs to the same isogeny class [11].

In this paper, isogenies are non-constant rational maps between two elliptic
curves that are also group homomorphisms. We work only with separable iso-
genies, meaning that the degree of any given isogeny is equal to the size of its
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kernel. Any subgroup G ⊂ E determines a unique isogeny (up to isomorphism)
whose kernel is G; this isogeny can be computed using Vélu’s formulas [25].

For a prime ` 6= p, there are precisely `+1 isogenies of degree ` that emanate
from a given supersingular curve. This induces a graph G` – called a supersingular
isogeny graph – whose nodes are the supersingular isomorphism classes and
whose vertices are the degree-` isogenies (up to isomorphism) between them.
The graph G` is connected and, with the exception of the nodes corresponding
to j-invariants 0 and 1728, an (` + 1)-regular multigraph which satisfies the
Ramanujan expansion property (see [3, §2.1]). Since every isogeny φ : E → E′

has a unique (up to isomorphism) dual isogeny φ̂ : E′ → E, we can view G` as
an undirected graph (excluding j = 0, 1728). We discuss the special node with
j-invariant 1728 in §3.1.

For any n with p - n, the set of n-torsion points, E[n] = {P ∈ E(F̄p) : [n]P =
0E}, satisfies E[n] ∼= Zn⊕Zn. Let (`, e) ∈ {(2, e2), (3, e3)}. Following [3, Problem
5.2] (see also [1, §2.4]), we define a simplified version of the CSSI problem that
underlies the SIDH and SIKE protocols within the above context as follows.

Definition 1 (CSSI). Given two supersingular elliptic curves E and E/G de-
fined over Fp2 such that up to isomorphism there exists a unique isogeny φ :
E → E/G of degree `e with (cyclic) kernel kerφ = G, the computational super-
singular isogeny (CSSI) problem is to compute φ or, equivalently, to determine
a generator for G.

2.2 The Meet-in-the-middle Claw Finding Algorithm

The most naive approach to solving CSSI is to perform a brute force search for
G. Since the number of cyclic subgroups of order `e in E(Fp2) is (`+1)`e−1, this
takes O(`e) time. The claw finding algorithm uses the fact that we can view G`
as an undirected graph, so that we can instead meet in the middle. Following [8]
(and assuming for simplicity that e is even), we can build two trees of curves:
the leaves of the first determine the set of all isomorphism classes `e/2-isogenous
to that of E, those of the second the set of all classes `e/2-isogenous to that of
E/G. While there are (`+1)`e/2−1 classes in each set, with overwhelmingly high
probability there is only one class that lies in both sets [8, §5.1]. It corresponds
to the node in the middle of the path from E to E/G, and once it is found, the
CSSI problem is solved by composing the `e/2-isogeny emanating from E with
the dual of that emanating from E/G. Assuming that all (` + 1)`e/2−1 classes
emanating from one of the sides can be computed and stored, solving the CSSI
problem this way takes O(`e/2) time.

It was not until the work of Adj et al. [1] that the classical complexity of this
claw finding algorithm in the context of CSSI analysis was scrutinized. Given that
`e/2 ≈ p1/4, and that the smallest prime p used to instantiate SIDH/SIKE prior
to [1] was larger than 2500, Adj et al. argue that the O(p1/4) storage required
to solve the problem as described above is infeasible. Instead, they fix 280 as an
upper bound on the number of units that can be stored, and analyze the runtime
of the claw finding algorithm subject to this storage capacity. At any given time,
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an attacker can now only afford to store a small fraction of the O(`e/2) nodes
emanating from one side, try all nodes from the other side, and repeat this
process until the CSSI problem is solved. Adj et al. therefore conclude that, for
CSSI instances of cryptographic relevance, the meet-in-the-middle algorithm is
more costly than the vOW algorithm described in the sequel.

2.3 Solving CSSI with van Oorschot-Wiener

Let S = {0, 1} ×
{

0, . . . , (`+ 1)`e/2−1 − 1
}

, E0 = E and E1 = E/G. Each
(i, y) ∈ S represents a kernel subgroup on the elliptic curve Ei. For example, for
` = 2, Adj et al. [1, §4.4] define a correspondence between (i, y) = (i, (b, k)) ∈
{0, 1}×

(
{0, 1, 2} ×

{
0, . . . , 2e/2−1 − 1

})
and the cyclic subgroup 〈Ri〉 ⊂ Ei with

Ri =

{
Pi +

[
b2e/2−1 + k

]
Qi if b = 0, 1 ,[

2k
]
Pi +Qi if b = 2 ,

where 〈Pi, Qi〉 = Ei[2
e/2−1] .

Let h : S → E0(Fp2) ∪ E1(Fp2), (i, y) 7→ Ri and let f : S → S be the function

that, on input of (i, y), computes the isogeny of degree `e/2 with kernel subgroup
〈Ri〉 emanating from Ei, evaluates the j-invariant j(Ei/〈Ri〉), and maps it back
to S using a function g. In order to make f behave like a (pseudo-)random
function on S, the function g : Fp2 → S is chosen to be (pseudo-)random.

A collision for f is a pair x, x′ ∈ S with f(x) = f(x′) and x 6= x′. If f is
modeled as a random function, the expected number of collisions (over the set of
random functions) is around |S|/2 [23, §4.2]. For SIDH, we rely on the function
h described above, while for SIKE, h is defined in §3.2 (in both cases for ` = 2).
Note that necessarily there exists one special collision, namely the one between
the two subgroups (one on E and one on E/G) that map to the same j-invariant
and solve the CSSI problem. Since this is the only useful collision, we follow
convention [23, 1] and refer to it as the golden collision. For the remainder of this
section we abstract away from the setting of isogenies, since it is not necessary
to understand the van Oorschot-Wiener algorithm. That is, we assume that f is
a truly random function on S for which we aim to find a single golden collision.

The vOW algorithm requires a proportion θ of the points in |S| to be distin-
guished points. Whether or not a point is distinguished can be decided by any
efficiently computable function S → {0, 1}, so long as it ensures that close to
θ · |S| of the |S| points are deemed distinguished. The algorithm searches for
collisions of f by performing many iterative walks in parallel as follows. Each
walk starts at a random point x0 ∈ S and produces a trail of points xi = f(xi−1)
for i = 1, 2, . . . until a distinguished point xd is reached. The triple (x0, xd, d)
is then added to a single common list and the processor chooses a new starting
point at random to produce a new trail.4

4 In our scenario, many collisions are encountered before the golden collision is found.
Starting new trails (rather than continuing on from distinguished points) avoids
falling into cycles and repeatedly detecting the same collisions [23, p.6, Footnote 5].
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Let w denote the number of triples of the form (x0, xd, d) that can be stored in
the list. To simplify memory access, van Oorschot and Wiener suggest making the
memory address for a given triple a function of its distinguished point. Optimized
parametrizations geared towards real-world CSSI instantiations will have w �
θ · |S|, i. e. one cannot store enough triples to account for all of the distinguished
points. This gives rise to three scenarios when we attempt to store a given triple
in memory. The first is that the memory at the given address is empty, in which
case we write the triple there and continue; the second is that the memory
is occupied by a triple with a different distinguished point, in which case we
overwrite it with the new triple and continue; the third scenario is that the two
triples contain the same distinguished point, in which case we have a collision and
we must now check whether or not it is the golden collision. Let these two triples
be (x0, xd, d) and (x′0, x

′
d′ , d

′) with xd = x′d′ , and assume d′ > d. To check the
collision, we walk x′0 forward by iterating (x′0, d

′)← (f(x′0), d′ − 1) until d′ = d,
so that both walks are the same number of steps from the distinguished point.
We then step both walks forward in unison iterating (x0, x

′
0) ← (f(x0), f(x′0))

until we find x0 6= x′0 such that f(x0) = f(x′0). If this is the golden collision, we
are done. Otherwise, we replace the old triple with the new triple and continue.
Note that the expected value of d, i. e. the expected length of the trails, is
geometrically distributed with mean 1/θ.

Van Oorschot and Wiener note that two undesirable occurrences can arise
during their algorithm. First, a trail can collide with the starting point of an-
other trail, which is called a Robin Hood. In practice, they note that θ is small
enough that this occurs rarely. If it does, we replace the triple in memory by the
triple found last. Second, a walk can enter into a cycle that does not contain a
distinguished point. In [23], the suggested workaround is to set a maximum trail
length (e. g. 20/θ), and to abandon trails beyond this point.

Perhaps the most subtle aspect of the algorithm is that we are essentially
forced to restart the above process many times, for many different instantiations
of the random function f . As explained in [23, §4.2], there exist roughly |S|/2
collisions for f , and on average we have to find this many collisions before we
encounter the golden collision. However, not all collisions occur equally likely; for
any given f , the golden collision may have a very low probability of detection.
For example, one or both of the two points that constitute the golden collision
could have very few trails leading into them, or in the extreme case, none at all;
if so we would have to be extremely lucky to find the collision, i. e. by randomly
choosing the two points as starting points. Thus, van Oorschot and Wiener
explain that the best average runtime is achieved by trying a function f until
a requisite number of distinguished points have been found (how many will be
discussed in the next subsection), and then restarting with a new function until
the golden collision is found. Henceforth, we use fn with n ∈ Z instead of f ,
where the subscript indicates the different function versions.
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2.4 Complexity Analysis of van Oorschot-Wiener

Van Oorschot and Wiener give a complexity analysis for finding a golden colli-
sion [23, §4.2], but note that their complexity analysis is “flawed”, giving multiple
reasons as to why a precise closed formula for the runtime is difficult to achieve.
Instead, after obtaining a general form for the runtime formula, they choose
to determine several of the constants experimentally. We reproduce this flawed
analysis, since we refer back to it throughout.

Recall that w triples (x0, xd, d) can be stored in memory. Whenever the
memory is full, the average number of points on trails leading to those w distin-
guished points is w/θ. Writing N = |S| and given any element of S, (uniformly)
randomly generated as output of the random function fn, the probability of it
being on the pre-existing trails is therefore w/(Nθ). Thus, on average we com-
pute Nθ/w points per collision. Checking a collision using the method described
above requires 2/θ steps on average, which gives the total average cost per col-
lision as Nθ/w + 2/θ. Taking θ =

√
2w/N minimizes this cost to

√
8N/w. As

N/2 collisions are required (on average) to find the golden collision, we require
(on average)

√
2N3/w function iterations to solve the CSSI problem.

Let m be the number of processors run in parallel and t the time taken to
evaluate the function fn. Since the algorithm parallelizes perfectly [23, §3] (in
theory), the total runtime T required to find the golden collision is

T =
2.5

m

√
N3/w · t , (1)

where 2.5 is one of the constants determined experimentally in [23]. Some adjust-
ments need to be made to the parameters because the phase where the memory is
being filled with distinguished points is not accurately captured in the analysis.
To describe the true performance of the algorithm, the fraction of distinguished
points is set to θ = α

√
w/N and the optimal constant α is determined experi-

mentally. The heuristic analysis by van Oorschot and Wiener suggests α = 2.25,
which is verified by Adj et al. for SIDH.

Equation (1) shows that the memory size of w distinguished points has a
crucial influence on the runtime of the vOW algorithm. It is therefore important
to store distinguished points as compactly as possible. If the property for a
point to be distinguished is a number of leading or trailing zeroes in its bit
representation, these zeroes do not have to be stored, shortening the bit length
of xd in the triple (x0, xd, d). Given a distinguished point rate θ, the number
of zeroes would be b− log θc. The counter d must be large enough to store the
number of steps in the longest trail, for example d must have dlog(20/θ)e bits. A
distinguished point can thus be stored with about 2 logN + log 20 bits as most
of the counter can be stored in the space of the omitted zero bits.

This deduction of the total runtime assumes that fn behaves like an average
random function. The average behavior can be achieved by using a number of
different function versions fn as explained above. To decide how long one such
function fn should be run before moving on, van Oorschot and Wiener intro-
duce the constant β. The function version needs to be changed and distinguished
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points in memory discarded after β ·w distinguished points have been produced.
This constant is determined heuristically, analogously to the determination of α.
For that purpose, a single n is fixed and run until β ·w distinguished points are
produced. In the meantime, the number of function iterations (i) and distinct
collisions (c) are counted. The number of function versions can then be approx-
imated as n/(2c), while the expected runtime can be estimated as in/(2c). It is
concluded that the latter is minimal for β = 10.

We note that this experiment is extremely useful. Namely, it provides a very
close estimate on the runtime without having to complete the full algorithm. For
that reason, we run the same experiment to estimate the impact of improved
collision checking (see Fig. 3 in §3.4).

3 Parallel Collision Search for Supersingular Isogenies

In this section we describe optimizations that we employ when specializing the
van Oorschot-Wiener algorithm to SIKE. We discuss improvements based on the
SIKE design in §3.1 and explain the specific instantiation of the vOW algorithm
in §3.2. Finally, we show how to use local memory for precomputation in §3.3
and to improve collision locating in §3.4.

3.1 Solving SIKE Instances

Although the problem underlying SIKE is closely related to the original SIDH
problem, there are slight differences. In this section, we discuss their impact on
the vOW algorithm and show how to reduce the search space from size 3 · 2e2−1

(resp. 4 · 3e3−1) to 2e2−4 (resp. 3e3−1).

As usual, let {`,m} = {2, 3} and let φ : E → EA be an isogeny of degree
`e` for which the goal is to retrieve the (cyclic) kernel kerφ. We opt to represent
curves in Montgomery form [13] EA : y2 = x3 +Ax2 + x with constant A ∈ Fp2 .
The Montgomery form allows for very efficient arithmetic, which is why it has
been used in the SIKE proposal. Further note that, if {U, V } is a basis of E[mem ],
then the points φ(U), φ(V ) are given as well. But as we do not use these points
on EA and assume the simplified version of the CSSI problem as presented in
Definition 1, we simply think of a challenge as being given by the curve EA.

Since isogenies of degree `e` are determined by cyclic subgroups of size `e` ,
there are exactly (` + 1)`e`−1 of them. This forms the basis for the general
algorithm specified for SIDH by Adj et al. [1], essentially defining a random
function on the set of cyclic subgroups.

Moving to SIKE, we observe that an important public parameter of its speci-
fication is the starting curve E0. Since p = 2e2 ·3e3−1 is congruent to 3 modulo 4
for e2 > 1, the curve y2 = x3 +x is supersingular for any choice of (large) e2 and
e3, and this curve was chosen as the starting curve in the Round-1 SIKE speci-
fication. In Round 2, the starting curve has been changed to y2 = x3 + 6x2 + x.

9



Choice of secret keys. Any point R of order `e` on E0 satisfies R = [s]P+[r]Q for
r, s ∈ Z`e` , where both s and r do not vanish modulo `. The SIKE specification
[7, §1.3.8] assumes s to be invertible and simply sets s = 1. This choice simplifies
implementations by making the secret key a sequence of random bits that is easy
to sample. When ` = 2, an appropriate choice of P,Q allows to avoid exceptional
cases in the isogeny arithmetic [17, Lemma 2]. The main consequence of this is
that the key space has size `e` as opposed to (`+ 1)`e`−1.

The initial step. Our first observation is that although nodes in the isogeny graph
generally have in-degree ` + 1, this is not true for vertices adjacent or equal to
j = 0 or j = 1728. In particular, the curve E0 : y2 = x3 + x has j-invariant
j = 1728 which in the case of ` = 2 has in-degree 2, while its (only) adjacent
node has in-degree 4. This is shown in Fig. 1a. For ` = 3 the curve has in-degree
2, while its adjacent nodes have in-degree 5; see Fig. 1b. This illustrates that
although the number of distinct kernels is `e` , the number of distinct walks (say,
as a sequence of j-invariants) in the isogeny graph is only 2e2−1 (resp. 2 · 3e3−1)
for ` = 2 (resp. ` = 3). We align the two (without loss of precision) by starting
our walks from the curve E6 : y2 = x3 + 6x2 + x when ` = 2. If ` = 3, we can
define the kernel on a curve in the class of the left or right adjacent node to
j = 1728 (the choice indicated by a single bit).

The reason for this behavior is that E0 has a non-trivial automorphism group
containing the distortion map ψ that maps (x, y) 7→ (−x, iy) (with inverse −ψ).
For any kernel 〈R〉 of size `e` we have E0/〈R〉 ∼= E0/〈ψ(R)〉 while 〈R〉 6= 〈ψ(R)〉,
essentially collapsing the two kernels into a single walk in the graph.

0 6

(a) The 2-isogeny graph

0

(b) The 3-isogeny graph

Fig. 1: Isogeny graphs starting from curves y2 = x3 +Ax2 + x where nodes are labeled
by their A-coefficient.

Remark 1. The presence of the distortion map on the node with j = 1728 thus
leads to loops and double edges in the graph, which reduces the entropy of
the private and public keys. This security reduction for SIDH or SIKE can be
easily circumvented by moving the starting node from E0 to E6 (with j(E6) =
287496), which avoids the loop and double edge for ` = 2. More concretely,
setting up a torsion basis {P,Q} of E6[2e] such that [2e−1]Q = (0, 0) and choosing
private keys r ∈ Z`e corresponding to kernels 〈P + [r]Q〉 implies this result.
This suggestion has indeed been included in the Round-2 update to the SIKE
specification. Note that the Round-1 SIKE specification set up Q as a point
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of order 2e defined over Fp [7, §1.3.3]. Such a point does not exist on E6, as
E6[2e](Fp) ∼= Z2e−1 × Z2. This only implies that the description of Q is longer
as it lies in E6(Fp2) \ E6(Fp).

It is not obvious how the nodes of E6 and E0 are connected in the 3-isogeny
graph, there is no reason to believe they are close. Therefore, we believe moving
to E6 alleviates issues with double edges in the 3-isogeny graph as well.

The final step. Recall that our elliptic curves are represented in Montgomery
form and that isogenies of degree 2e2 are computed as a sequence of 4-isogenies.
As already noted in [3, §4.3.2], the choice of arithmetic in SIKE implies that the
points (1,±

√
A+ 2) ∈ EA lie in the kernel of the dual of the secret isogeny.

Hence, the final step can be immediately recomputed from the public key.
Consequently, EA/〈(1,±

√
A+ 2)〉 is isogenous to E0 by an isogeny of degree

2e2−2, and to E6 by an isogeny of degree 2e2−3. Therefore, replacing EA by
EA/〈(1,±

√
A+ 2)〉 reduces the number of distinct walks to 2e2−3 for ` = 2.

For ` = 3, the representative EA of its isomorphism class can be obtained as
the co-domain curve of a 3-isogeny starting from any of its adjacent nodes. As
far as we know, this does not leak any information about the final 3-isogeny.

Remark 2. To address the issue of leaking the final kernel, we notice that for
any Ā ∈ Fp2 with j(EĀ) = j(EA) we have

Ā ∈
{
±A,±(3x2 +A)/

√
x2

2 − 1,±(3z2 +A)/
√
z2

2 − 1

}
, (2)

where x2, z2 ∈ Fp2 are chosen such that x3 +Ax2 + x = x(x− x2)(x− z2). That
is, the isomorphism class contains exactly six Montgomery curves. One can show
that each of the 6 distinct 4-isogenies emanating from j(EA) can be computed
by selecting Ā as above and using a kernel point (of order 4) with x-coordinate
1. Therefore, randomly choosing Ā from any of the options in (2) is equivalent
to randomizing the kernel of the final isogeny. Unfortunately, selecting Ā to be
anything other than ±A seems to require an expensive square root. For this
reason, we do not suggest full randomization, but emphasize that the random
selection of one of ±A leads to a single bit of randomization at essentially no
computational effort. As a result, one would only leak the kernel of the final
2-isogeny (with kernel (0, 0)) instead of the last 4-isogeny.

The Frobenius endomorphism. Every isomorphism class can be represented by
an elliptic curve E defined over Fp2 and has an associated Frobenius map π :

E → E(p), (x, y) 7→ (xp, yp). For any kernel 〈R〉 ⊂ E, we have

j(E/〈R〉)p = j(E(p)/〈π(R)〉) .

As a result, it suffices to search for a path to a curve with j-invariant equal to
j(EA) or j(EA)p. In other words, we define an equivalence relation on the set
of j-invariants by j0 ∼ j1 if and only if j1 ∈ {j0, jp0}. Finding a path to EA
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reduces to finding a path to any representative of the class [j(EA)]. In Fig. 2 we
show how the classes propagate through the 2-isogeny graph starting at E6. A
very similar structure appears in the 3-isogeny graph. Note that we assume that
isogeny degree is approximately

√
p, making it unlikely for endomorphisms of

that degree to exist. As such, the leaves of trees such as in Fig. 2 most probably
are all distinct.

6

33

664554

1313111212117891010987

Fig. 2: Part of the 2-isogeny graph for any large p = 2e2 · 3e3 − 1 starting at E6 :
y2 = x3 + 6x2 + x. Black dots represent curves defined over Fp, j-invariants in the
same equivalence class are denoted by equal numbers. All edges represent 2-isogenies.
In particular, there are exactly 23 + 1 = 9 classes at distance 4 from E6.

Although the number of classes is approximately half the number of j-
invariants, it is perhaps not obvious how to translate this into a computational
advantage. First assume that ` = 2, and that the optimizations specified above
are taken into consideration. That is, we start on the curve E6 and look for
an isogeny of degree 2e2−3 to the curve EA. As usual, kernels are of the form
P + [r]Q for some basis {P,Q}. Note that there is no reason to choose P and
Q exactly as (multiples of) those in the SIKE specification, so we expand on a
particularly simple choice here.

Recall first that #E6(Fp) = 2e2 · 3e3 [20, Exercise V.5.10]. Since the Fp-
rational endomorphism ring of E6 is isomorphic to one of Z[π] or Z[(1+π)/2] [4,
Proposition 2.4], a result by Lenstra [10, Theorem 1(a)] tells us that

E6(Fp) ∼=

{
Z3e3 × Z2e2 if EndFp(E) ∼= Z[π] ,

Z3e3 × Z2e2−1 × Z2 if EndFp(E) ∼= Z[ 1+π
2 ] .

Consequently, there exists an Fp-rational point of order 2e2−3 and we can choose
Q to be this element. Moreover, p ≡ 7 mod 8 implies that

√
2 ∈ Fp, and therefore

that E6[2] ⊂ E6(Fp). In other words, π acts trivially on points of order 2. Since
π fixes Q and has eigenvalues ±1, for any other element P such that 〈P,Q〉 =
E6[2e2−3], the action of Frobenius is given by

π|〈P,Q〉 =

(
−1 0
µ 1

)
, for some µ ∈ Z2e2−3 .
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Note that [2e2−2]P has order 2 and therefore is fixed under π. As a result, µ
is even. Replacing P by P − µ

2Q leads to a basis {P,Q} such that π(P ) = −P
and π(Q) = Q. Note that the value of µ can be easily found (e. g. by using the
Pohlig-Hellman algorithm [19]) since the group order is extremely smooth.

Given such a basis {P,Q}, the conjugate of the j-invariant determined by
〈R = P+[r]Q〉 is given by the isogeny with kernel 〈−π(R) = P+[2e2−3−r]Q〉. As
a result, every class {j, jp} can be uniquely represented by r ∈ {0, 1, . . . , 2e2−4}.
If we start the algorithm by separately testing r = 2e2−4, the remainder can be
reduced to searching for kernels 〈P + [r]Q〉 where r ∈ {0, 1, . . . , 2e2−4 − 1}. This
reduces the search space to size 2e2−4.

By a completely analogous (and even simpler) argument, we can fix a basis of
E[3e3−1] on any of the two adjacent nodes of E0 in the 3-isogeny graph such that
the action of π on this basis is described by a diagonal matrix with eigenvalues
±1. Similar to the case of ` = 2, this allows a reduction of the search space from
2 · 3e3−1 to (approximately) 3e3−1.

Overall, the presence of the Frobenius endomorphism on the node with j =
1728 reduces the number of equivalence classes that are at a given distance from
j. While the Round-2 SIKE specification has moved away from j = 1728, the
curve E6 still has a Frobenius endomorphism. Indeed, in that case it is not
helpful to differentiate between j-invariants in the same equivalence class. As
(almost) every equivalence class contains 2 representatives at a certain depth,
one less bit of randomness is needed to compute an isogeny of the same degree
(see e. g. Fig. 2, where the final step could always move to the left node). These
issues can be avoided by moving to a curve where the Frobenius map is not an
endomorphism. While this prevents the Frobenius trick, it is a subtle issue (see
Remark 3).

Remark 3. The curve E0 : y2 = x3 + x has a known endomorphism ring [20,
III.4.4], which is helpful in certain attack scenarios [16]. Although one would
prefer to start on a random node in the graph, there is no known way of randomly
selecting one other than choosing a random walk in the isogeny graph. However,
the walk itself cannot be public and it is unclear how to verifiably achieve this.

3.2 Applying van Oorschot-Wiener to SIKE

In this section, we fix ` = 2 and describe in detail how to implement the van
Oorschot-Wiener algorithm (with parameters defined as in §2.3–2.4). We point
out a subtle mistake in the algorithm (appearing already in the original paper [23]
and also used in the work of Adj et al. [1]) and show how to overcome it. The
solution involves using a different notion of distinguishedness, and it allows us to
achieve the average vOW runtime for a fixed instance. This allows us to focus on
one particular instance, where we are then able to use precomputation in order
to analyze the algorithm’s behavior (when applied to SIKE) at a much larger
scale.

Again, we assume to be given a challenge curve EA that is isogenous of
degree 2e2−3 to E6 and aim to find the isogeny. We write e = e2/2 and let S =
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{0, 1, . . . , 2e−1 − 1}. Fix points P,Q ∈ E6 and U, V ∈ EA such that E6[2e−1] =
〈P,Q〉 and EA[2e−2] = 〈U, V 〉, where π(P ) = −P and π(Q) = Q.

The step function. We begin by describing the function family fn. As fn maps
through classes (of size 1 or 2) in Fp2 , we first define a canonical representative
of the class. Since the conjugate of j = a + b · i ∈ Fp2 is j = a − b · i, we say
that j is even whenever lsb(b) = 0. Using >> to denote the rightshift operator,
we define the function h from S to the set of supersingular j-invariants by

h : r 7→

{
j if j is even

j otherwise
, for j =

{
j(E6/〈P + [r >> 1]Q〉) if lsb(r) = 0

j(EA/〈U + [r >> 1]V 〉) if lsb(r) = 1
.

In other words, the least significant bit of r determines whether we compute an
isogeny starting from E6 or EA, while we always ensure to end up on an even
j-invariant. Finally, we define fn : S → S by fn(r) = gn(h(r)), where gn is a
hash function indexed by n that maps h(r) back into S. More concretely, we let
gn be the extended output function (XOF) based on AES in CBC mode using
the AES-NI instruction set (see §4), with the initialization vector and plaintext
set to 0 and the key determined by n.

Note that the Frobenius map π is an endomorphism on E6, but not (nec-
essarily) on EA. Given r ∈ {0, 1, . . . 2e−2 − 1}, kernels of the form P + [r]Q
determine isogenies of degree 2e−1 starting from E6, yet it follows from §3.1 that
they correspond to exactly 2e−2 (distinct) equivalence classes of j-invariants.
Kernels of the form U + [r]V determine 2e−2-isogenies from EA, all of which
lead to distinct, non-conjugate j-invariants. So h maps bijectively into a set of
size 2e−1 − 1, with only a single collision given by the isogeny from E6 to EA.

Distinguished points and memory. Assume the memory to have size w a power
of 2. This is not technically necessary, but simplifies both the arguments and
the implementation. Elements of S are represented by exactly e− 1 bits and we
assume that logw � e− 1.

Adj et al. [1, §4.4] determine the memory position of a triple (r0, rd, d) using
the logw least significant bits of MD5(3, rd). Moreover, the value rd is distin-
guished if and only if MD5(2, rd) ≤ 232θ mod 232 (viewing the output of MD5
as an integer). Although the algorithm will run, it has several complications.

1. Calling a hash function at every step to check for distinguishedness causes
overhead. Similarly, requiring a hash function computation for every read
and write operation to memory causes unnecessary overhead.

2. The algorithm (typically) requires the use of several functions fn for dis-
tinct n. Since the memory location of elements is independent of n, distin-
guished points (r0, rd, d) found by fn and (s0, se, e) found by fn+1 (say),
with se = rd, will be classified as a valid collision, triggering the backtrack-
ing subroutine. This will fail since fn and fn+1 give rise to different random
functions, leading to work going to waste. To counteract this, one could keep
track of n in memory. As this is costly, the approach of Adj et al. is to zero
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out the memory when the maximum number of distinguished points for a
given n is reached. This can get expensive as well, especially in the case of
large distributed memory.

3. The distinguishedness property is independent of n. Although the runtime of
the algorithm is estimated to be 2.5

√
|S|3/w by van Oorschot and Wiener [23,

§4.2], this is only true if one takes the average over all collisions. However, for
SIKE (and whenever one wants to find a specific collision), its input values
are fixed. That is, if the golden collision of the function f is determined by
values r, s ∈ S such that f(r) = f(s), then the golden collision of fn (for all
n) also occurs for r and s. The runtime will be above average if one or both of
r and s are distinguished. This is because the algorithm samples a new start-
ing value every time it reaches r or s, only computing fn(r) or fn(s) when
they are sampled as initial values. Since distinguishedness is independent of
n, this behavior propagates throughout all the fn.

We give a solution to all of these problems. First, we note that elements of S
are uniform bit strings of length e− 1. Since the value rd of the triple is always
the output of the (random) step function, we simply let the logw least significant
bits determine the memory location. More precisely, the triple (r0, rd, d) is stored
in the memory location indexed by (rd + n) mod w. Notice that we choose the
location to be dependent on n. Therefore, if two triples (r0, rd, d) and (s0, se, e)
with se = rd are distinguished under functions fn and fm respectively (with
n 6= m), they will be stored at different locations (rd + n) mod w 6= (se + m)
mod w, sparing us the backtracking. Moreover, any other value (t0, tc, c) that is
stored during function version fm at the address of (r0, rd, d) will have tc 6= rd,
and will not be a collision, sparing us the backtracking. Of course, a memory
address could be written to during both fn and fn+w and never in between. But
for reasonable values of n and w this is highly unlikely, and it would only incur
in the (relatively small) cost of checking for an invalid collision when it happens.

Secondly, we define a better distinguishedness property. Since it should be
independent of the memory location, we use the value of rd >> logw. As usual,
using all of the remaining e − 1 − logw independent bits of rd, we define an
integer bound by B = θ ·2e−1−logw. We then define rd to be distinguished if and
only if

(rd >> logw) + n ·B ≤ B mod 2e−1−logw .

With that, every element of S is distinguished for approximately one in every B
functions fn. Although we do not prove that this reduces every instance to the
average case, it holds true heuristically.

We observe that the most significant bits rd >> logw of a distinguished el-
ement rd are not always zero. This would be preferable since it reduces the
memory requirement, not needing to store the top bits that are zero [23, §6].
Instead we can simply write the value (rd >> logw) + n · B mod 2e−1−logw to
memory, which by definition is at most B. Adding and subtracting n ·B modulo
2e−1−logw when writing to and reading from memory has negligible overhead.

We note that making distinguishedness depend on the function version also
causes a triple (—, rd, —) to be unlikely to be distinguished often (where time
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is measured in function versions), giving time to the algorithm to overwrite a
stored triple (r0, rd, d) with a different triple (s0, se, e) with se 6= rd, reducing
the change of invalid collisions. Since both fn-dependent memory location and
distinguishedness are cheap to realise, we keep both.

Remark 4. The problems we address appear for SIDH, while the above descrip-
tion solves them for SIKE. An analogous solution works for SIDH, but one should
be careful that the values of S are not uniform bit strings. They are elements
(i, b, k) ∈ {1, 2} × {0, 1, 2} × {0, . . . , 2e2/2 − 1} [1, §4.4] which are represented as
(3 + e2/2)-bit strings where the least significant bit determines i and the two
next lower order bits determine b. Instead, we define the memory location by
the value ((rd >> 3) + n) mod w and the distinguishedness property by

(rd >> (logw + 3)) + n ·B ≤ B mod 2e−1−logw , B = θ · 2e−4−logw .

Here, one should be even more careful not to lose too much precision for θ, but
again the assumption that e − 1 � logw should alleviate this. In all of our
instances this is not a concern.

Precomputing the step function and experiments. The main upside to the above
modifications is that every problem instance will have a guaranteed average
runtime of (approximately) 2.5

√
|S|3/w. As such, we do not have to worry about

running into an unlucky instance.
However, there is a second useful consequence: to analyze the behavior of our

modifications, it is sufficient to analyze a single instance. Now observe that any
function fn is of the form fn = gn ◦h, where h is fixed across the different n and
by far the most expensive part of the evaluation of fn. For testing any instance
for which h(S) fits into our memory, we can therefore simply precompute h(r)
for all r ∈ S and store them in a table indexed by r. The evaluation of the step
function fn(r) then simply looks up h(r) in the table, and evaluates it under
gn (which is comparatively fast). This improves the speed of our benchmarks
significantly, while not affecting any outcomes regarding a precise analysis of the
vOW algorithm.5

We summarize the results so far in Table 1, comparing the results of our
implementation to the expected theoretical outcome as well as the results of Adj
et al. [1]. Note that our results are close to optimal, and showcase the expected

speedup of a factor
√

63 ≈ 15× in the number of steps when moving from SIDH
to SIKE. Moreover, we note that our software solves the SIDH instances using
less than half the number of steps that were taken for the same instances in [1].
The primes used in Table 1 are

23 · 232 · 320 − 1 , 31 · 236 · 322 − 1 , 71 · 240 · 325 − 1 , 37 · 244 · 327 − 1 ,
13 · 248 · 330 − 1 , 252 · 333 − 1 , 57 · 256 · 335 − 1 .

5 Of course, this strategy is not useful for a distributed attack on an actual crypto-
graphically sized problem instance. It only aids the efficiency of small-sized experi-
ments in order to get a better understanding of the algorithm.
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Table 1: The average number of function versions n and evaluations of fn used for
finding an isogeny of degree 2e2 . The expected value (Exp.) for the number of function
versions resp. steps is reported as 0.45 · |S|/w resp. log (2.5 ·

√
|S|3/w), for set size

|S| = 3 ·2e2/2 resp. |S| = 2e2/2−1 for SIDH resp. SIKE. The numbers are averaged over
1000 iterations and use 20 cores.

Function versions Steps

e2 logw
Exp. [1] This Exp. [1] This

SIDH SIKE SIDH SIDH SIKE SIDH SIKE SIDH SIDH SIKE

32 9 173 29 319 177 28 23.20 19.32 24.38 23.29 19.58

36 10 346 58 838 342 54 25.70 21.82 27.25 25.74 21.89

40 11 691 115 1015 677 103 28.20 24.32 29.01 28.33 24.40

44 13 691 115 942 704 107 30.20 26.32 30.91 30.37 26.42

48 13 2765 461 – – 434 33.20 29.32 – – 29.38

52 15 2765 461 – – 422 35.20 31.32 – – 31.34

56 17 2765 461 – – 424 37.20 33.32 – – 33.38

3.3 Partial Isogeny Precomputation

Computationally, the most expensive part of the vOW step function is the (re-
peated) evaluation of isogenies of degree `e`/2−1. To alleviate this burden, one
can partially precompute the isogeny tree by computing all possible isogenies of a
fixed degree ∆ and storing a table of the image curves together with some torsion
points (that help to complete the isogenies from these intermediate curves. Such
precomputation presents a trade-off between memory and computation time for
the step function). We elaborate on the method in detail. As it applies to the
general case of SIDH, we discuss that first and then specialize to SIKE instances
with ` = 2.6

Let E be a supersingular curve and P,Q ∈ E be such that 〈P,Q〉 = E[`d],
for some d > 0 (typically d ≈ e`/2). Let R = [s]P + [r]Q be a point of order `d,
and φ : E → E/〈R〉 an isogeny of degree `d with kernel 〈R〉. Recall that ` does
not divide both r and s. We split the isogeny φ into two isogenies in the usual
way, with the first having degree `∆ for some 0 < ∆ < d as follows.

Write s = s0 + s1`
∆ and r = r0 + r1`

∆ for s0, r0 ∈ Z`∆ and s1, r1 ∈
Z`d−∆ . Then R = [s0]P + [r0]Q + [`∆]([s1]P + [r1]Q), while the point R∆ =
[`d−∆]R = [s0]([`d−∆]P ) + [r0]([`d−∆]Q) generates the kernel of the isogeny
φ∆ : E → E/〈R∆〉 of degree `∆. The point φ∆(R) on E/〈R∆〉 has order `d−∆

and determines an isogeny ψ∆ : E/〈R∆〉 → E/〈R〉 of degree `∆−d such that
φ = ψ∆ ◦ φ∆. Crucially, the first pair of partial scalars (s0 = s mod `∆ , r0 =

6 The extreme case, when the full isogeny tree from one side is precomputed, corre-
sponds to the meet-in-the-middle algorithm as described by Adj et al. [1].
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r mod `∆) determines φ∆ and the points φ∆([s0]P + [r0]Q), φ∆([`∆]P ) and
φ∆([`∆]Q) on E/〈R∆〉. Given this curve and these points, the second pair of
partial scalars (s1 = bs/`∆c , r1 = br/`∆c) determines kerψ∆ = (φ∆([s0]P +
[r0]Q)) + [s1]φ∆([`∆]P ) + [r1]φ∆([`∆]Q) and allows to complete the isogeny φ.
Therefore, precomputation consists of computing a table with entries[

E/〈R∆〉, φ∆([s0]P + [r0]Q), φ∆([`∆]P ), φ∆([`∆]Q)
]
,

for all (s0, r0) ∈ Z2
`∆ such that ` does not divide both s0 and r0. Such a table

entry can then be used to compute any full degree isogeny of degree `d with
kernel point R = [s]P + [r]Q such that s ≡ s0 mod `∆ and r ≡ r0 mod `∆ and
any (s1, r1).

However, it suffices to store only two points on E/〈R∆〉. If ` - s, we can
assume that s = 1 and R = P + [r]Q for r ∈ Z`d . Then R∆ = [`d−∆]P + [r0 ·
`d−∆]Q and the precomputed table only needs to contain entries of the form[

E/〈R∆〉, P∆ = φ∆(P + [r0]Q), Q∆ = φ∆([`∆]Q)
]

(3)

for all r0 ∈ Z`∆ . The kernel of ψ∆ (for completing φ) can be computed as
φ∆(R) = P∆ + [r1]Q∆ for any r with r ≡ r0 mod `∆. If ` | s, then ` - r and
R = [`t]P +Q for some t ∈ Z`d−1 such that s = `t. In that case table entries are
of the form [

E/〈R∆〉, P∆ = φ∆([`∆]P ), Q∆ = φ∆([`t0]P +Q)
]

for all t0 ∈ Z`∆−1 , while kerψ∆ = [t1]P∆ + Q∆. Altogether, the table contains
`∆ + `∆−1 = (`+ 1) · `∆−1 entries and reduces the cost of any isogeny of degree
`d from d log d to (d−∆) log(d−∆) [3, §4.2.2].

Now we move on to SIKE and fix ` = 2. That is, we assume s = 1 and
every table entry to be of the form (3). Recall that the function h takes as
input a value r ∈ Z`e−1 (where e = e2/2) and computes an isogeny with kernel
〈P + [r >> 1]Q〉 on E6 if lsb(r) = 0, and an isogeny with kernel 〈U + [r >> 1]V 〉
on EA otherwise. The latter reflects the case above with d = e − 2 perfectly,
leading to a precomputed table of size 2∆ from EA while reducing the cost of
the isogeny from (e− 2) log(e− 2) to (e− 2−∆) log(e− 2−∆). The case of the
curve E6 is slightly different due to the presence of the Frobenius endomorphism.
Although there are 2e−2 distinct equivalence classes of j-invariants, the degree
of the corresponding isogenies is 2e−1. As such, we compute a table of size
2∆ comprising of the equivalence classes of j-invariants at depth ∆ + 1 away
from E6.7 As a result, all isogenies used throughout the whole implementation
have fixed degree e− 2−∆. The isogeny cost reduces from (e− 1) log(e− 1) to
(e−2−∆) log(e−2−∆) and choosing ∆ such that e−2−∆ ≡ 0 mod 2 allows the
use of 4-isogenies as in SIKE. Table 2 demonstrates the effect of precomputation
on the SIKE step function.

7 This slightly changes how an element r0 + r12∆ ∈ Z2e−2 , for r0 ∈ Z2∆ and r1 ∈
Z2e−2−∆ , corresponds to an isogeny. Instead of kernel 〈P + [r0 + r12∆]Q〉, it now
gives rise to the kernel 〈P + [r0 + r12∆+1]Q〉. This has no impact on the algorithm.
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Table 2: Effect of precomputation on the running time of the SIKE step function.
Numbers represent the cumulative running time in seconds of 1000000 calls to the step
function, for the corresponding modulus and precomputation depth ∆. All experiments
were run on Atomkohle.

∆

e2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

32 20.51 17.96 15.47 13.09 10.91 8.84 7.17 4.92 — — — — — — —

36 23.50 20.46 17.91 15.45 13.08 10.85 8.82 7.18 4.84 — — — — — —

40 26.79 23.60 20.97 18.45 15.96 13.60 11.42 9.35 7.62 5.00 — — — — —

44 29.37 26.34 23.58 21.01 18.44 15.96 13.60 11.38 9.32 7.70 4.89 — — — —

48 32.48 29.57 26.88 24.21 21.33 18.80 16.25 13.83 11.57 9.41 7.70 4.87 — — —

52 36.38 32.93 29.92 27.13 24.15 21.53 18.85 16.36 13.93 11.64 9.48 7.76 4.87 — —

56 40.05 35.48 33.29 29.67 26.80 25.60 21.46 18.94 16.43 14.60 11.83 9.73 8.03 4.89 —

60 41.56 38.54 35.72 32.73 29.91 27.09 24.38 21.69 19.17 16.68 14.26 12.03 9.95 8.26 4.96

Computing an isogeny tree. To obtain the lookup table, one computes image
curves and torsion points for all isogenies of degree 2∆ (resp. 2∆+1) and stores
them indexed by their kernel representation. Adj et al. [1, Section 3.2] describe
a depth-first-search approach to compute the required curves as the leaves of a
full 2-isogeny tree of depth e2/2 for the meet-in-the-middle algorithm (c. f. [1,
Fig. 1]). This method is much more efficient than the naive way of computing
full 2e2/2-isogenies for all possible kernel points. Obviously, it can be applied for
partial trees to compute isogenies of degree 2∆ (resp. 2∆+1) and an analogous
version can utilize a 4-isogeny tree.

Using memory for precomputation. Depending on the specific problem instances
and communication properties of the network, the memory required for precom-
putation could alternatively be used as part of the main memory that stores
distinguished points. In other words, precomputed tables might take away a
certain amount of memory from the distinguished point storage space.

Assume that due to latency and communication constraints, each of the m
parallel processors needs its own table of size τ(∆), and for simplicity that every
processor precomputes the same depth tree. For example, for the SIDH case of
Adj et al. [1] we would assume each processor to have precomputed a table of
size τ(∆) = 2 · (2∆+2∆−1) = 3 ·2∆. For SIKE, this size is τ(∆) = 2 ·2∆ = 2∆+1.

As shown in Section 2.4, each distinguished point is represented with roughly
e2 bits (i. e. about 1

2 log p bits) since log |S| = e2/2− 1. This takes into account
that the b− log θc leading zeros in a distinguished point are omitted in memory.
Every entry in the precomputed table can be represented by three Fp2 elements
(i. e. about 6 log p bits). Therefore, each such table element uses memory that
could store about 12 distinguished points instead. For precomputation depth ∆,
the table entries thus use space for 12 · τ(∆) distinguished points. This means
that the vOW main memory is reduced from w to w−12 · τ(∆) ·m points (when
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each of the m processors stores its own table). Thus, the number of function
iterations increases by a factor 1/

√
1− 12 · τ(∆) ·m/w. Note that this is well-

defined since 12 · τ(∆) ·m cannot exceed the maximum available memory w.
While taking away memory increases the expected number of function iter-

ations, precomputation reduces the step function cost by a factor σ(∆, e). We
have σ(∆, e) = (e−∆) log(e−∆)/(e log e) for SIDH (given e2 is even), while for
SIKE (separating the two equally likely cases where we start from E6 resp. EA)

σ(∆, e) =
1

2

(
(e− 2−∆) log(e− 2−∆)

(e− 2) log(e− 2)
+

(e− 2−∆) log(e− 2−∆)

(e− 1) log(e− 1)

)
. (4)

The total runtime of the van Oorschot-Wiener algorithm decreases if

σ(∆, e)√
1− 12 · τ(∆) ·m/w

< 1 .

Remark 5. In an actual distributed implementation, the situation might be dif-
ferent and favor precomputation more. For example, it is reasonable to assume
that several processors in a multi-core machine are able to share a precomputed
table. Furthermore, depending on the design of the main memory, each machine
may have memory available that cannot contribute to it and might as well be
used to store a table for a limited amount of precomputation. In such situations,
using memory for lookup tables might not have any negative effect on the overall
runtime. Example 1 shows that speed-ups for cryptographic parameters can be
obtained with very small tables, making this scenario more realistic.

Example 1. Let p = 2216 · 3137 − 1 and (e,m,w) = (108, 264, 280), following
the setup of [1, Remark 6]. For both SIKE and SIDH, the (near) optimal pre-
computation depth is ∆ = 6 and each processor pre-computes a local table
that takes up space for 12 · τ(∆) distinguished elements; this requires around
41 resp. 62 kilobytes of memory per processor (totalling 2.34% resp. 3.52% of
the full memory w). In both cases, the step function cost is reduced by a factor
σ(∆, e) ≈ 0.93. For SIKE, we decrease the runtime of the full algorithm by a
factor approximately 0.94, for SIDH, by about 0.95.

However, a more realistic example assumes that many processors can share
the precomputation table. In our setup, a machine of 40 cores can share a single
table. In that case, the optimal depth is found at ∆ = 12. For SIKE, we use
a table of about 2.7 megabytes per processor (totalling approximately 3.75% of
the total memory w). The cost of the algorithm is reduced by a factor 0.88. For
SIDH we obtain a table of size 4.0 megabytes (5.63% of the total memory). The
runtime is decreased by a factor 0.89.

3.4 Fast Collision Checking

As discussed in Remark 5, in a distributed implementation processors are likely
to have local memory that cannot contribute to the main memory (that which
is used for storing distinguished point triples). We now describe another way to
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use such memory to significantly improve the overall runtime of van Oorschot-
Wiener. Analogous to §3.3, even if memory is consumed that could otherwise be
used to store distinguished points, we argue that dedicating a moderate amount
of storage to this faster collision checking reduces the overall runtime.

Recall from §2.3 that a single walk in the vOW algorithm starts at a point
x0 ∈ S and produces a trail of points xi = f(xi−1) for i = 1, 2, . . . , until it
reaches a distinguished point xd. Assume that the triple (x0, xd, d) collides with
a triple, say (y0, ye, e), previously stored in main memory and that it is not a
mere memory collision. To check if we have found the golden collision, we need
to locate the indices i < d and j < e for which xi 6= yj and f(xi) = f(yj). Van
Oorschot and Wiener note that, since d and e have expected value 1/θ, retracing
the two paths from their starting points to the colliding point requires 2/θ total
steps on average [23, p. 9]. Our goal is to lower the overall runtime by reducing
the number of function iterations for retracing.

Saving intermediate values. Suppose that apart from the global memory for
keeping distinguished points, a processor has access to enough local memory
to store t − 1 additional points intermittently (more on what this means in a
moment). On a walk from x0 to xd, it now stores t + 1 points in total. These
points (xd0 = x0, xd1 , . . . , xdt = xd), where 0 = d0 < d1 < · · · < dt, can now be
used together with (y0, ye), to locate the collision more efficiently.

We start by copying y0 to y′, e to e′ and iterate steps y′ ← f(y′), e′ ← e′−1.
When y′ is the same distance away from the distinguished point as the closest of
the saved points, say xdj (i.e. j is minimal with e′ = dt − dj), we check whether
y′ = xdj . If not, we set y0 ← y′ and step y′ forward dj+1−dj steps and compare
again. This is repeated until y′ collides with one of the saved points, say xdk .
Note that equality checks only occur with the xdi and not at every step as in the
original collision checking function. Once the minimal index k with y′ = xdk is
detected, we know that the collision must take place between xdk−1

and xdk . At
this point, the original collision checking function without saving intermediate
points can be called on the triples (xdk−1

, xdk , dk− dk−1) and (y0, y
′, dk− dk−1).

Note that if the collision occurs at xd0 , we have a Robin Hood and return false.

What have we gained? First of all, the trail with stored points is not retraced
at all, only in the final call to the original collision checking, on a single subin-
terval of length dk − dk−1, which in general is much shorter than the original
trail length dt. The trail starting at y0 is fully retraced to the collision, where
additional steps are taken that cover the colliding interval. The savings are larger
when intervals are shorter and thus when more intermediate points are saved.
This approach is implemented in our software.

Fig. 3 shows how the number of function steps for checking and locating colli-
sions is reduced when running vOW on an AES-based function with a set of size
230 and memory of size 215. With α = 2.25, the average walk length is 1/θ ≈ 80.
There is an immediate gain for even allowing a small number of intermediate
points. However, additional gains become smaller when increasing this number
because, when the maximal number of intermediate points approaches the aver-
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age trail length, almost every point can be stored and adding more memory does
not add more intermediate points, nor influence the distance between them.
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Fig. 3: Number of steps used for locating a collision as a function of maximum amount
of intermediate values allowed for the AES-based random function with log |S| = 30,
logw = 15. Averaged over 64 function versions, using 28 cores and run on Atomkohle.

Remark 6. There is potential for further improvement by allowing storage for
2t − 2 points. As above, the t − 1 points (xd0 , . . . , xdk−2

, xdk+1
, xdt) are stored

while walking the trail. But during collision checking against (y0, ye, e), t−1 ad-
ditional intermediate points are stored when retracing the trail from y0. When
the collision is encountered, the latter points take the place of the xdi and
(y0, ye)← (xdk−1

, xdk). Storage for the t− 1 elements (xd0 , . . . , xdk−2
, xdk+1

, xdt)
can be reused for keeping intermittent points when retracing the trail from the
new y0. Repeating this procedure, we recurse until ye = f(y0), at which point
we check for the golden collision. Note that splitting the space for 2t− 2 points
in half eases the exposition, but might be suboptimal. The optimal allocation of
memory to the different trails should be determined for a large scale cryptana-
lytic effort based on how much memory is available.

How to save points intermittently. It remains to describe how the t− 1 interme-
diate points are stored. Given the expected trail length of 1/θ, one could store
points at regular intervals of length 1/(tθ). However, walks much longer than
1/θ would lead to a much larger distance between the final intermediate point
and the distinguished point; walks much shorter than 1/θ would lead to unused
memory that could have decreased the average gap between intermediate points.
In the ideal scenario, a full set of (t − 1) additional points is stored and they
are as close to being equally spaced as possible when the distinguished point is
reached. Since trails randomly vary in length, the best approach involves over-
writing previously placed points in such a way that the distances between points
grow with the trail length.
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We modify an algorithm for finding cycles in random walks by Sedgewick,
Szymanski and Yao [18]. In the first t steps of the trail, the allocated memory
is exhausted by storing a point at every step, so that (d0, d1, . . . , dt−1, dt) =
(0, 1, . . . , t− 1, t), and the points are all at distance 1 from one another. At any
stage of the procedure, define δ = minj>0{dj − dj−1}. From hereon, every δ
steps, we simply look for the smallest value of j where dj−dj−1 = δ, remove the
point xdj from the list, and add the current point to the list. At some point, the
last point that is δ steps away from another point will be deleted and replaced by
a point that is twice as far away from the last; by definition, δ is simultaneously
doubled and all of the points in the list are δ away from each other.

4 Implementation

We produced two implementations of the van Oorschot-Wiener algorithm, one in
C, optimized for efficiency, and a more modular one in C++. The C implementa-
tion makes use of the Microsoft SIDH library [12] for field and curve arithmetic
when running the attack against SIDH and SIKE instances. We have modified
their code to support smaller primes, and added non-constant time operations
if beneficial (e. g. finite field inversions). For parallel computations we use the
gcc implementation of OpenMP 4.5 [15]. For simplifying batch experiments we
wrote Python wrappers to our code using SWIG [2].

The experiments are run on two different machines. The first, referred to
as Atomkohle, contains two Intel(R) Xeon(R) E5-2690 v4 CPUs running at
2.60GHz that both have 14 physical cores (so 28 in total). The second, referred
to as Solardiesel, contains two Intel(R) Xeon(R) Gold 6138 CPUs at 2.00GHz
that have 20 cores each (40 in total). Unless specified otherwise, all measure-
ments and statistics reported in this paper have been produced using the C
implementation and are compiled with gcc version 6.3.0.

Optimized Implementation. The C software contains three step functions to run
experiments. The first is a generic, fast random function, and the other two are
those arising from random walks in the 2-isogeny graph as determined by the
SIDH (see §2.3) and SIKE (see §3.2) specifications. This allows the use of a
fast random function to verify that our implementation matches the expected
asymptotic values (confirming the original vOW analysis [23]) and linear speed-
up on larger sets, while also displaying our improvements in the SIDH and SIKE
settings (e. g. as shown in Table 1).

Modular Implementation. While for all SIDH and SIKE experiments we used our
C implementation on individual multi-core machines, it would be interesting to
deploy the van Oorschot-Wiener algorithm in alternative settings. For example,
running attacks with more cores distributed over the internet could change the
balance between the cost of a step function evaluation and the cost of memory
access, and would certainly present memory topology and core synchronization
challenges. Furthermore, collision-finding techniques play a role in the cryptanal-
ysis of other encryption schemes, e. g. NTRU [6, 24], where memory constrained
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Table 3: Reproduction of Table 3 from [1], using our C++ implementation, using an
AES-based generic random function on Atomkohle. Experiments are run using 20 cores.
#fn is the number of different random functions used per instance.

Expected Average

log |S| logw #runs #fn log
√
|S|3/w #fn log

√
|S|3/w cycles

18 9 1000 230.40 23.82 204.74 23.83 30.23

20 10 1000 460.80 26.32 420.01 26.27 30.57

22 11 1000 921.60 28.82 898.79 28.86 33.05

24 13 1000 921.60 30.82 850.49 30.74 34.89

cryptanalytic experiments could be useful. Since it could be tricky to adapt our
C code to such varied settings, we also produced a C++ implementation with
the goal of obtaining a more modular, developer-friendly, code base. Test re-
sults on a fast, generic, random function showing that it matches the expected
asymptotics can be found in Table 3. Ideally, it should not be too difficult to
write “drivers” for access to different forms of memory (say, storage over the
internet rather than local RAM), or different sets S and step functions fn.

Selecting a XOF and PRNG. One goal of actually implementing vOW is to ver-
ify the runtime against the asymptotic theoretical values, using a fast random
function. Adj et al. [1] chose to use an MD5-based random function for this pur-
pose. We have instead opted for a custom XOF based on AES-CBC mode using
AES-NI instructions. This provides much better performance on modern hard-
ware, while guaranteeing cryptographic properties of the function. Regarding
our PRNG, we use AES-CTR mode with AES-NI instructions.

In Table 4 we reproduce [23, Table 1] which computes the O(·) constant in
front of the expected number of steps for the optimal choice of θ and is used
to determine the constant α, to demonstrate the validity of our pseudo-random
step function.

5 Analysis of SIKE Round-2 Parameters

In the Round 2 of the NIST standardization effort, the analyses of Adj et al. [1]
and Jaques and Schanck [9] have prompted the introduction of two new parame-
ter sets to the SIKE submission, SIKEp434 and SIKEp610, as well as a security
reassessment of the parameter sets SIKEp503 and SIKEp751. The four sets are
based on the primes p434 = 22163137−1, p503 = 22503159−1, p610 = 23053192−1
and p751 = 23723239−1, and target security categories 1, 2, 3 and 5, respectively.

This section provides concrete classical security estimates for these parameter
sets, in two different ways; the first follows an approach similar to the one by van
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Table 4: Reproduction of [23, Table 1], using the AES-based XOF on Solardiesel, i. e. the

number of function steps required to find the golden collision divided by |S|3/2/w1/2.
The experiments are averaged over 1000 function versions and run with 20 cores.

logw

log |S| 2 4 6 8 10 12 14 16

20 3.90 2.87 2.62 2.52 2.48 2.45 2.40 2.28

24 3.99 2.89 2.60 2.51 2.48 2.48 2.47 2.45

28 3.95 2.92 2.59 2.51 2.49 2.48 2.48 2.47

32 4.07 2.90 2.61 2.51 2.49 2.48 2.48 2.48

36 4.22 2.94 2.60 2.52 2.49 2.48 2.48 2.48

Oorschot and Wiener and Adj et al.. We count the average number of oracle calls
to run the vOW algorithm and multiply them by the complexity of the oracle
itself, measured in x64 instructions. This leads to a more informed estimate than
provided by Adj et al. and Jaques and Schanck, but the final result remains the
same – see §5.1. A downside of this approach is that although it captures much of
the algorithm’s cost, it ignores some potentially significant parts. In particular,
it does not account for the cost of memory access (assumed free) or the practical
difficulty of scaling across different cores (assumed linear), see [1, §5, Remark 6].
We present an alternative method in §5.2.

5.1 Concrete Security of SIKE Round-2 Parameters

In Table 5 we use the Round-2 SIKE implementation to estimate the number of
x64 instructions necessary to compute half-size isogenies. More specifically, we
provide estimations for 2be2/2c−2-isogenies in Table 5a and for 3be3/2c-isogenies
in Table 5b. These instruction counts are intended to be lower bounds on the
number of classical gates required to mount vOW, and we argue that these
estimates are still conservative with respect to the true gate count. A lower
bound on the runtime of the vOW algorithm can now simply be obtained by
multiplying the costs of the above isogeny oracles with the number of times
they are called, which we summarize in Table 6. Our analysis concludes that
the number of classical gates required for (i) vOW on SIKEp434 is at least 2143,
(ii) vOW on SIKEp503 is at least 2170, (iii) vOW on SIKEp610 is at least 2210,
and (iv) vOW on SIKEp751 is at least 2262. Note that the counts for (i) and
(iii) closely agree with classical gate counts by Jaques and Schanck, who are also
rather conservative in their costing of the isogeny functions – see [9, §7.1].

5.2 Concrete Security of SIKEp434

Finally, we focus our attention on arguably the most interesting cryptanalytic
target, namely the SIKE Round-2 category-1 parameter set SIKEp434 with
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Table 5: Isogeny costs in terms of the total number of x64 instructions isum, broken
down into multiplication instructions imul, addition, subtraction and logical instruc-
tions iasl and move instructions imov; M denotes multiplication, S squaring, add
addition and sub subtraction in Fp2 .

DBL 4-iso M S add sub imul iasl imov log(isum)

SIKEp434 282 166 2124 1560 1726 1228 595476 2099108 1534760 22.01

SIKEp503 362 189 2582 1858 2047 1480 905376 3332506 2099672 22.60

SIKEp610 434 255 3266 2398 2653 1888 1638294 5433856 3553530 23.34

SIKEp751 548 334 4196 3100 3434 2432 3254832 9365124 9863656 24.42

(a) Costs for a 2be2/2c−2-isogeny (omitting single 2-isogenies for odd exponent) using
an optimal strategy composed of quadrupling and 4-isogeny steps; DBL denotes a
point doubling, 4-iso a 4-isogeny computation, and the cost for DBL is assumed to be
4M + 2S + 2add + 2sub and for 4-iso it is 6M + 6S + 7add + 4sub.

TPL 3-iso M S add sub imul iasl imov log(isum)

SIKEp434 199 217 2695 2080 3635 2478 769445 2826741 2067722 22.43

SIKEp503 229 275 3253 2520 4537 2978 1172192 4479442 2875831 23.02

SIKEp610 290 350 4130 3200 5770 3780 2112930 7266720 4861220 23.76

SIKEp751 395 429 5339 4120 7191 4910 4208868 12471749 13228173 24.83

(b) Costs for a 3be3/2c-isogeny (omitting single 3-isogenies for odd exponent) using
an optimal strategy composed of point tripling and 3-isogeny steps; TPL denotes a
point tripling, 3-iso a 3-isogeny computation and the cost for TPL is assumed to be
7M + 5S + 3add + 7sub and for 3-iso it is 6M + 5S + 14add + 5sub.

Table 6: Average number of x64 instructions to run vOW on the 2- and 3-torsion for
the Round-2 SIKE parameters with memory size w = 280, set size N = |S| = 2e2/2−1

for the 2-torsion and N = |S| = 3(e3−1)/2 for the 3-torsion – see §3. Numbers are shown
as the floor of their base-2 logarithms. The number of isogeny computations, #isog,
is computed by setting m = t = 1 in Eq. (1), and the numbers isum of instructions
for each isogeny are taken from Tables 5a and 5b. The total number of instructions,
vOW, is the product of #isog and isum and is intended to act as a lower bound on
the number of gates required to solve the CSSI problem with the vOW algorithm.

2-torsion 3-torsion

N #isog isum vOW N #isog isum vOW

SIKEp434 107 121 22 143 107 122 22 144

SIKEp503 124 147 23 170 125 149 23 172

SIKEp610 151 187 23 210 150 187 23 210

SIKEp751 185 238 24 262 188 244 24 268
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claimed (classical) security comparable to AES-128. Although the analysis in
the previous section shows agreement between our estimates and those in the
literature, all approaches so far have one thing in common: communication and
memory access costs are not taken into account. As these become non-negligible
when the memory and the number of cores grow — already mentioned in the
context of SIDH/SIKE by Adj. et al. [1, Remark 6] — one can wonder how
significant they are. Since such costs are often difficult to capture in theoretical
models, we take a more practical approach.

We start by noticing that the current complexity estimates are measured in
average number of oracle calls, where an oracle call corresponds to an isogeny
computation (e. g. of degree 2106 or 368 for SIKEp434). Given the fact that we
now have an optimized implementation of the algorithm itself, a simple alterna-
tive is to measure the complexity in average number of cycles instead. Much of
the heuristic approach of van Oorschot and Wiener [23, §4.2] remains the same;
we run a single function version and measure the number of distinct collisions it
generates, from which we approximate the runtime of the full algorithm. That
is, we assume that each function version behaves approximately the same with
respect to the number of distinct collisions it generates, which van Oorschot
and Wiener heuristically show to be true for w ≥ 216 (the results for different
function versions are within 1% of one another). Thus, writing N for the set size
and c for the number of distinct collisions generated per function version, every
function version has (independent) probability 2c/N to find the golden collision
and completing the vOW algorithm requires on average N/(2c) versions. If each
one requires t cycles to complete, the average total runtime is therefore tN/(2c).

Equivalently, on average we need t/c cycles per generated collision, of which
there are N/2 in total, leading to the above average runtime. Therefore, one
may want to simplify the analysis by generating only very few collisions and
approximating the runtime from that. However, we note that t/c is very large
in the beginning of the algorithm as the memory starts out being empty, while
the distribution of distinguished points in memory becomes biased towards those
with lower probability of producing a collision – see [23, §4.2]. It may be possible
to run less than a full function version to get a close approximation of t/c, but
we consider this out of scope for this work and stick with completing a function
version for our estimations.

Looking at the conjectured setup proposed by Adj et al. (i. e. memory w =
280, m = 264 cores), when used against SIKEp434 the number of oracle calls
grows linearly with

√
Nw/m, where N = 2107, while each oracle call takes on

the order of 222 x64 instructions (see Table 5a). In the theoretical model where
memory accesses are free and the algorithm parallelizes perfectly, the function
version can be run with approximately 251.5 x64 instructions per core (and to
run the full algorithm we need approximately 227 function versions, agreeing
with the estimates in Table 6). If each x64 instruction were a single cycle on a
machine running at 1 GHz, such a computation would finish in about 37 days.
Although it should be noted that such a setup is not realistic, other combinations
of resources allow for (theoretically) running a single function version within a
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reasonable amount of time (say, a year). It is not clear that these runtimes will
hold true in practice, as for example distributing the experiment across different
machines can cause significant overhead. We consider exploring this overhead,
e. g. by analyzing how different network topologies affect the results, a very
worthwhile research direction.

In a more constrained environment, i. e. when running experiments on Atom-
kohle for which we choose w ∈ {216, 218, 220} and m = 28, running a single
SIKEp434 function version requires millions of years. Instead, we decrease the
degree e of the isogeny we try to reconstruct, but do not change the finite field,
to a point where experiments run in a few hours. Crucially, if the theoretical
analysis of van Oorschot and Wiener holds up for these resources, then the run-
time of a function version grows linearly with

√
N and we can extrapolate the

runtime of a single function version for the actual SIKEp434 parameters on such
a setup by drawing a line through the data points. Interestingly, the difference
between this approximation of the security of SIKEp434 when compared to the
theory can be seen as an error measure for the theoretical analysis of vOW (the
better the fit, the closer the theory to reality).

More concretely, we choose e = 28, 30, . . . , 42 and measure the cycle counts
to complete one function version and the number of distinct collisions that they
generate. We use precomputation depth ∆ = 16 and to account for the difference
of the cost of the oracle (a 2e-isogeny) we normalize the cycle count by a factor
σ(∆, e) · ζ(e), with ζ(e) = (1/2) · ((e− 2) log(e− 2) + (e− 1) log(e− 1)) the es-
timated average cost of the oracle and σ(∆, e) given as in Equation (4). Hence,
we have a measure for the average number t/c of cycles required to generate a
single collision, which we summarize in Table 7.

For a fixed w, we then extrapolate, using the least squares method, the
function that maps

√
2e−1 to the corresponding value in the table. This leads to

the three approximation functions

z16(e) = σ(∆, e) · ζ(e) · (3.44.. ·
√

2e−1 + 19247.78..) ,

z18(e) = σ(∆, e) · ζ(e) · (1.72.. ·
√

2e−1 + 6151.88..) ,

z20(e) = σ(∆, e) · ζ(e) · (0.87.. ·
√

2e−1 − 928.81..) ,

where the factor σ(∆, e) ·ζ(e) is only there to undo the normalization factor. For
any w, the runtime of a single function version for SIKEp434 is then zlog(w)(e)
cycles, while the full algorithm has total runtime 2e−2 · zlog(w)(e) cycles, since
|N | = 2e−1. Thus, setting e = 108, we expect vOW on SIKEp434 to have
a runtime of 2170.47.., 2169.47.. and 2168.50.. cycles for w = 216, w = 218 and
w = 220 respectively. For comparison, using Equation (1) combined with the
approximation of the cost of the isogeny oracle of Table 5a, we expect runtimes
2170.71.., 2169.71.. and 2168.71.. x64 instructions respectively. We observe that these
approximations match very closely, confirming that the theoretical estimates lie
very close to the practical runtimes for these values of w and m. Indeed, this is
no surprise, as such small values should not cause significant overhead.

However, we emphasize that this is the first time a theoretical estimate on the
security of SIKEp434 is met with serious practical consideration (i. e. without

28



Table 7: Number of cycles (measured in thousands and rounded to the nearest multiple
of 103) to generate a single collision, for different memory sizes w and isogeny instances
of degree 2e2 , where e = e2/2. All numbers are scaled by a factor σ(∆, e) · ζ(e).

w
e

28 30 32 34 36 38 40 42

216 69 113 177 391 726 1 331 2 257 5 261
218 – 57 90 196 362 659 1 122 2 642
220 – – 46 99 182 331 557 1 340

ignoring memory access times and issues with parallelism). If our setup with
w = 220 was run on an instance with e = 108 it would require (on average)
2168.50.. cycles to complete. We believe this value could therefore be viewed as
an upper bound on the security level of SIKEp434. On the other hand, the
analyses of Adj et al. [1] and Jaques and Schanck [9], assuming w = 280 and
m = 264, provide a lower bound on the security level. This gap could be closed by
computing zlog(w) for larger values of w and m and showing that they agree with
the theoretical estimations, which is a valuable effort that should be seriously
considered to understand the security of SIKEp434. It is of course not clear that
the gap between the upper and lower bound will vanish completely; scaling the
setup to large memory and distributed systems will cause significant overhead,
which is also noticeable in cryptanalytic efforts in other domains [26].
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