
Efficient ephemeral elliptic curve cryptographic keys

Andrea Miele, Arjen K. Lenstra

EPFL, Lausanne, Switzerland

Abstract. We show how any pair of authenticated users can on-the-fly agree on an el-
liptic curve group that is unique to their communication session, unpredictable to outside
observers, and secure against known attacks. Our proposal is suitable for deployment on
constrained devices such as smartphones, allowing them to efficiently generate ephemeral
parameters that are unique to any single cryptographic application such as symmetric key
agreement. For such applications it thus offers an alternative to long term usage of stan-
dardized or otherwise pre-generated elliptic curve parameters, obtaining security against
cryptographic attacks aimed at other users, and eliminating the need to trust elliptic curves
generated by third parties.
Keywords: Elliptic curve cryptography, complex multiplication method

1 Introduction

Deployment of elliptic curve cryptography (ECC) [32, 40] is becoming more common. A variety of
ECC parameters has been proposed or standardized [58, 16, 17, 5, 1, 39, 13, 9], with or without all
kinds of properties that are felt to be desirable or undesirable, and as reviewed in Section 2. All
these proposals and standards contain a fixed number of possible ECC parameter choices. This
implies that many different users will have to share their choice, where either choice implies trust
in the party responsible for its construction. Notwithstanding a variety of design methods intended
to avoid trust issues (cf. [6]) and despite the fact that parameter sharing is generally accepted for
discrete logarithm cryptosystems, recent allegations [52, 28] raise questions. As extensively dis-
cussed at the recent Workshop on Elliptic Curve Cryptography Standards [45], currently the main
challenge in curve selection lies in re-establishing users’ trust in ECC which vacillated after the
above allegations were announced, and keep being followed by a continuing string of disconcert-
ing information security related mishaps. Relying on choices made by others, either related to
elliptic curve parameter selection or to any other personal choice related to information security,
parameter sharing and long term usage of any type of cryptographic key material, may have to
be reconsidered. In this paper we consider what can realistically be done if this reconsideration is
taken to the extreme and trust in other parties’ contributions is reduced to a minimum: never rely
on choices made by others, avoid parameter sharing as much as possible, and refresh key material
as often as feasible.

Specifically, we consider an approach that is diametrically different from current common
practice, namely selection of personalized, short-lived ECC parameters. By personalized we mean
that no party but the party or parties owning or directly involved in the usage of parameters
should be responsible for their generation:

– for a certified public key, only the owner of the corresponding private key should be responsible
for the selection of all underlying parameters;

– in the Diffie-Hellman protocol, as there is no a priori reason for the parties to trust each others’
public key material other than for mutual authentication, both parties, and no other party,
should be equally responsible for the construction of the group to be used in the key agreement
phase.

Personalization excludes parameter choice interference by third parties with unknown and possibly
contrary incentives. It also avoids the threats inherent in parameter sharing.

By short-lived, or ephemeral, we mean that parameters are refreshed (and possibly recertified)
as often as feasible and permitted by their application; for the Diffie-Hellman protocol it means
that a group is generated and used for just a single protocol execution and discarded after comple-
tion of the key agreement phase. Ephemeral parameters minimize the attack-window before the
parameters are discarded. Attacks after use cannot be avoided for any type of public key system.
But the least we can do is to avoid using parameters that may have been exposed to cryptanalysis
for an unknown and possibly extended period of time before their usage.

In this paper we discuss existing methods for personalized, short-lived ECC parameter gener-
ation. Even with current technology, each end-user can in principle refresh and recertify his or her
ECC parameters on a daily basis (cf. Section 2): “in principle” because user-friendly interfaces to
the required software are not easily available to regular users. But it allows arbitrary, personalized
choices – within the restrictions of ECC of course – in such a way that no other party can control
or predict any of the newly selected parameters (including a curve parameterization and a finite
field that together define an elliptic curve group, cf. below). Personalization isolates each user from
attacks against other users, and using keys for a period of time that is as short as possible reduces
the potential attack pay-off. Once personalized, short-lived ECC (public, private) key pairs are
adopted at the end-user level, certifying parties may also rethink their sometimes decades-long
key validities.

To satisfy the run time requirements of the Diffie-Hellman protocol, it should take at most a
fraction of a second (jointly on two consumer-devices) to construct a personalized elliptic curve
group suitable for the key agreement phase, that will be used for just that key agreement phase,
and that will be discarded right after its usage – never to be used or even met again. In full gen-
erality this is not yet possible, as far as we know, and a subject of current research. However, for
the moment the method from [34] can be used if one is willing to settle for partially personalized
parameters: the finite field and thus the elliptic curve group cardinality are still fully personal-
ized and unpredictable to any third party, but not more than eight choices are available for the
Weierstrass equation used for the curve parameterization. Although the resulting parameters are
not in compliance with the security criteria adopted by [9] and implied by [39], we point out
that there is no indication whatsoever that either of these eight choices offers inadequate security:
citing [9] “there is no evidence of serious problems”. The choice is between being vulnerable to as
yet unknown attacks – as virtually all cryptographic systems are – or being vulnerable to attacks
aimed at others by sharing parameters, on top of trusting choices made by others. Given where
the uncertainties lie these days, we opt for the former choice.

An issue that we are not paying attention to in this paper is the performance of the elliptic
curve cryptosystem itself, once the parameters have been generated, or a comparison between the
curves as generated here and the standardized ones. This is not because the issue is not of interest,
but mostly because for either type of curve perfectly adequate runtimes can easily be achieved
using generally available software. Also, our main point of concern in this paper is not performance
optimization but minimization of trust in other parties.

After introductory sections on elliptic curves and their selection for ECC (Section 2) and com-
plex multiplication (Section 3.1) we provide an explanation (in Section 3.2) how the “class number
one” Weierstrass equations proposed in [34] were derived and how that same method generalizes
to slightly larger class numbers. As a result we expand, also in Section 3.2, the table from [34]
with eleven more Weierstrass equations, thereby more than doubling the number of equations
available. In Section 3.3 we show how our methods can be further generalized, and why practical
application of these ideas may not be worthwhile. In Section 4 we describe a new method for par-
tially personalized ECC parameter generation that is substantially faster than the one from [34]
and that also allows generation of Montgomery friendly primes and, at non-trivial overhead, of
twist-secure curves. We demonstrate the effectiveness of our approach with an implementation on
an Android Samsung Galaxy S4 smartphone. It generates a unique 128-bit secure elliptic curve
group in about 50 milliseconds on average and thus allows efficient generation and ephemeral usage
of such groups during Diffie-Hellman key agreement. Security issues (including the one mentioned
above) are discussed in Section 5. In the concluding Section 6 we briefly discuss extension of our
method to genus 2.

Our source code will be made available. As selecting ECC parameters on the fly adds more
complexity to Diffie-Hellman key agreement, users should use the open-source code we will pro-
vide, after extensive testing and potential improvement, to minimize the probability of failure.
Techniques to make the selection process more robust like additional sanity checks may be ap-
plied.

2 Preliminaries

Elliptic curves. We fix notation and recall some well known facts. For a finite field K of char-
acteristic larger than 3, a pair (a, b) ∈ K2 with 4a3 + 27b2 6= 0 defines an elliptic curve Ea,b = E
over K, to be thought of as the coefficients of the Weierstrass equation

y2 = x3 + ax+ b.

The set of pairs (x, y) ∈ K2 that satisfy this equation along with a point at infinity O is the set
of points E(K) of E over K. This set has the structure of an abelian group (with O acting as
the identity element) and is thus also referred to as the group of points of E over K or simply
the elliptic curve group. Traditionally, this group is written additively. See [53, Chapter III] for
a more general and formal introduction to this material, including effective ways to perform the
group operation in a constant number of operations in K.

For g ∈ E(K) the discrete logarithm problem with respect to g is the problem to find, given
h ∈ 〈g〉, an integer n such that h = ng. For properly chosen E, the fastest published methods
to solve this problem require on the order of

√
q operations in the group E(K) (and thus in K),

where q is the largest prime dividing the order of g. If k ∈ Z is such that 2k−1 ≤ √q < 2k, the
discrete logarithm problem in E(K) is said to offer k-bit security.

With K = Fp the finite field of cardinality p for a prime p > 3, and a randomly chosen elliptic
curve E over Fp, the order #E(Fp) behaves as a random integer close to p + 1 (see [38] for the
precise statement) with |#E(Fp) − p − 1| ≤ 2

√
p. For ECC at k-bit security level it therefore

suffices to select a 2k-bit prime p and an elliptic curve E for which #E(Fp) is prime (or almost
prime, i.e., up to an `-bit factor, at an `

2 -bit security loss, for a small `), and to rely on the alleged
hardness of the discrete logarithm with respect to a generator (of a large prime order subgroup)
of E(Fp). How suitable p and E should be constructed is the subject of this paper. For reasons
adequately argued elsewhere (cf. [7, Section 4.2]), for cryptographic purposes we explicitly exclude
from consideration elliptic curves over extension fields.

Depending on the application, twist-security may have to be enforced as well: not just #Ea,b(Fp) =
p + 1 − t must be (almost) prime (where |t| ≤ 2

√
p), but also p + 1 + t must be (almost) prime.

This number p+ 1 + t is the cardinality of the group of points of a (quadratic) twist Ẽ = Er2a,r3b

of E = Ea,b, where r is any non-square in Fp.

Generating elliptic curves for ECC. The direct approach is to first select, for k-bit security,
a random 2k-bit prime p and then to randomly select elliptic curves E over Fp until #E(Fp)
is (almost) prime. Because of the random behavior of #E(Fp), the expected number of elliptic

curves to be selected is linear in k and can be halved by considering #Ẽ(Fp) as well (and replacing

E by Ẽ if a prime #Ẽ(Fp) is found first). Because #E(Fp) can be computed in time polynomial
in k using the Schoof-Elkies-Atkin algorithm (SEA) [50], the overall expected effort is polynomial
in k. This method is referred to as SEA-based ECC parameter selection. Generating twist-secure
curves in this way is slower by a factor linear in k.

Table 1 lists actual ECC parameter generation times, for k ∈ {80, 112, 128}. Using primes p with
special properties (such as being Montgomery friendly, i.e., p ≡ ±1 mod 232 or 264) has little or no
influence on the timings. For comparison, key generation times are included for traditional non-
ECC asymmetric cryptosystems at approximately the same security levels. The ECC parameter
generation timings – in particular the twist-secure ones – may explain why the direct approach to
ECC parameter generation is not considered to be a method that is suitable for the general public.
Although this may have to be reconsidered and end-users could in principle – given appropriate

Table 1: Timings of cryptographic parameter generation on a single 2.7GHz Intel Core i7-3820QM, av-
eraged over 100 parameter sets, for prime elliptic curve group orders and 80-bit, 112-bit, and 128-bit
security. For RSA these security levels correspond, roughly but close enough, to 1024-bit, 2048-bit, and
3072-bit composite moduli, for DSA to 1024-bit, 2048-bit, and 3072-bit prime fields with 160-bit, 224-bit,
and 256-bit prime order subgroups of the multiplicative group, respectively. The timings in the last two
rows have been obtained using a C implementation of the method we present in this paper.

80-bit security 112-bit security 128-bit security

RSA 80 milliseconds 0.8 seconds 2.5 seconds
DSA 0.2 seconds 1.8 seconds 8 seconds

random ECC (MAGMA) 12 seconds 47 seconds 120 seconds
same, but twist-secure 6 minutes 37 minutes 83 minutes

low discriminant curves over random prime fields 2 milliseconds 5 milliseconds 6 milliseconds
same, but twist secure 10 milliseconds 27 milliseconds 45 milliseconds

software – (re)generate their ECC parameters and key material on a daily basis, the current state-
of-the-art of the direct approach does not allow fast enough on-the-fly ECC parameter generation
in the course of the Diffie-Hellman protocol. Table 1 also lists timings obtained using the method
presented in this paper.

Pre-selected elliptic curves. We briefly discuss some of the elliptic curves that have been
proposed or standardized for ECC. As mentioned above, we do not consider any of the proposals
that involve extension fields (most commonly of characteristic two).

With two notable exceptions that focus on ≈ 125-bit security, most proposals offer a range of
security levels. Although 90-bit security [11] is still adequate, it is unclear why parameters that
offer less than 112-bit security (the minimal security level recommended by NIST [43]) should
currently still be considered, given that the ≈ 125-bit security proposals offer excellent perfor-
mance. With 128-bit security more than sufficient for the foreseeable future, it is not clear either
what purpose is served by higher security levels, other than catering to “TOP SECRET” 192-bit
security from [44]. In this context it is interesting to note that 256-bit AES, also prescribed by [44]
for “TOP SECRET”, was introduced only to still have a 128-bit secure symmetric cipher in the
post-quantum world (cf. [55]), and that 192-bit security was merely a side-effect that resulted from
the calculation 128+256

2 (cf. [55]). In that world ECC is obsolete anyhow.

In [16] eleven different primes are given, all of a special form that makes modular arithmetic
somewhat easier than for generic primes of the same size, and ranging from 112 to 521 bits. They
are used to define fifteen elliptic curves of eight security levels from 56-bit to 260-bit, four with
a = 0 and b small positive (“Koblitz curves”), the other eleven “verifiably at random” but nine of
which with a = p− 3, and all except two with prime group order (two with cofactor 4 at security
levels 56 and 64). Verifiability means that a standard pseudo random number generator when
seeded with a value that is provided, results in the parameters a (if a 6= p−3) and b. The arbitrary
and non-uniform choice for the seeds, however, does not exclude the possibility that parameters
were aimed for that have properties that are unknown to the users. This could easily have been
avoided, but maybe this was not a concern at the time when these curves were generated (i.e.,
before the fall of the year 2000). Neither was twist-security a design criterion back then; indeed
some curves have poor twist security (particularly so the 96-bit secure curve), whereas the single
192-bit secure curve is perfectly twist-secure. If one is willing to use pre-selected curves, there does
not seem to be a valid argument, at this point in time, to settle for anything less than optimal
twist-security: for general applications they are arguably preferable and their only disadvantage is
that they are relatively hard to find, but this is done just once and thus no concern. Surprisingly,
in the latest (2013) update of the federal information processing standards (“FIPS”) for digital
signatures (cf. [58]) only two out of five twists of the curves at security level 96 or higher and with
a = p − 3 (all “recommended for federal government use”) satisfy the group-cardinality margins
allowed by [58].

The use of special primes was understandable back in 2000, because at that time ECC was
relatively slow and any method to boost its performance was welcome, if not crucial, for the survival
of ECC. The trend to use special primes persists to the present day, in a seemingly unending
competition for the fastest ECC system. However, these days also regular primes without any
special form offer more than adequate ECC performance. This is reflected in one of the proposals
discussed below.

The proposals [5] and [7] each contain a single twist-secure curve of (approximately) 125-bit
security, possibly based on the sensible argument that there is no need to settle for less if the
performance is adequate, and no need to require more (cf. above). All choices are deterministic
given the design criteria, easily verifiable, and have indeed been verified. For instance, the finite
field in [5] is defined by the largest 255-bit prime, where the choice 255 is arguably optimal
given the clever field arithmetic. The curve equation is the “first” one given the computationally
advantageous curve parameterization and various requirements on the group orders. Another, but
similarly rigidly observed, design criterion (beyond the scope of the present paper) underlies the
proposal in [7].

The curves from [5] and [7] are perfectly adequate from a security-level and design point of
view. If the issue of sharing pre-selected curves is disregarded they should suffice to cater to
all conceivable cryptographic applications (with the exception of pairing-based cryptography, cf.
below). Nevertheless, their design approach triggered two follow-up papers by others. In [1] they
are complemented with their counterparts at approximate security levels 112, 192, and 256. In [13]
the scope of [7] is broadened by allowing more curve parameterizations and more types of special
primes, while handling exceptions more strictly. This leads to eight new twist-secure curves of
(approximately) 128-bit security, in addition to eight and ten twist-secure curves at approximate
security levels 192 and 256, respectively.

The seven Brainpool curves [39] at seven security levels from 80-bit to 256-bit revert to the
verifiably pseudo random approach from [16], while improving it and thereby making it harder
to target specific curve properties (but see [6]). The primes p have no special form (except that
they are 3 mod 4) and are deterministically determined as a function of a seed that is chosen in
a uniform manner based on the binary expansion of π = 3.14159 The curves use a = p − 3
and a quadratic non-residue b ∈ Fp (deterministically determined as a function of a different seed,
similarly generated based on e = 2.71828 . . .) for which the orders of the groups of the curve and its
twist are both prime. As an additional precaution, curves are required to satisfy #Ea,b(Fp) < p.
In [37] it is shown how usage of constants such as π and e can be avoided while still allowing
verifiable and trustworthy random parameter generation.

The SafeCurves project [9] specifies a set of criteria to analyze elliptic curve parameters aiming
to ensure the security of ECC and not just the security (i.e., the difficulty) of the elliptic curve
discrete logarithm problem, and analyzes many proposed parameter choices, including many of
those presented above, with respect to those criteria. This effort represents a step forward towards
better security for ECC. For this paper it is relevant to mention that the SafeCurves security
criteria include the requirement that the complex-multiplication field discriminant (cf. below)
must be larger than 2100 in absolute value. Aside from the lack of argumentation for the bound,
this requirement seems to be unnecessarily severe (and considerably larger than the rough 240

requirement implied by [39]), not just because it is not supported by theoretical evidence, but
also because the requirement cannot be met by pairing-based cryptography, considered by many
as a legitimate and secure application of elliptic curves. On the other hand, [9] does not express
concerns about the trust problem inherent in the usage of (shared) parameters pre-selected by
third parties.

Attacking multiple keys. We conclude this section with a brief summary of results concerning
the security of multiple instances of the “same” asymmetric cryptographic system. Early successes
cannot be expected, or are sufficiently unlikely (third case).

1. Multiple RSA moduli of the same size. It is shown in [19, Section 4] that after a costly size-
specific precomputation (far exceeding the computation and storage cost of an individual
factoring effort), any RSA modulus of the proper size can be factored at cost substantially

less than its individual factoring effort. This is not a consequence of key-sharing (as RSA
moduli should not be shared), it is a consequence of the number field sieve method for integer
factorization [35].

2. Multiple discrete logarithms all in the same multiplicative group of a prime field. Finding a
single discrete logarithm in the multiplicative group of a finite field is about as hard as finding
any number of discrete logarithms in the same multiplicative group. Sharing a group is common
(cf. DSA), but once a single discrete logarithm has been solved, subsequent ones in the same
group are relatively easy.

3. Multiple discrete logarithms all in the same elliptic curve group. Solving a single discrete
logarithm problem takes on the order of

√
q operations, if the group has prime order q, and

solving k discrete logarithm problems takes effort
√
kq. Thus, the average effort is reduced for

each subsequent key that uses the same group.
4. Multiple discrete logarithms in as many distinct, independent groups. Solving k distinct discrete

logarithm problems in k groups that have no relation to each other requires in general solving
k independent problems. With the proper choice of groups, no savings can be obtained.

The final two cases most concern us in this paper. In the third case, with k users, an overall attack
effort

√
kq leads to an average attack effort per user of “just”

√
q/k. This may look disconcerting,

but if q is properly chosen in such a way that effort
√
q is infeasible to begin with, there is arguably

nothing to be concerned about. Compared to the rather common second case (i.e., shared DSA
parameters), the situation is actually quite a bit better. Nevertheless, existing users cannot prevent
that new users may considerably affect the attack incentives. In the final case such considerations
are of no concern. However, given the figures from Table 1, realizing the final case for ECC with
randomly chosen parameters is not feasible yet for all applications. The next best approach that
we are aware of is further explored below.

3 Special cases of the complex multiplication method

Our approach is based on and extends [34]. It may be regarded as a special case, or a short-cut, of
the well known complex multiplication (CM) method of which many variants have been published
and which appears under a variety of names in the literature (such as “Atkin-Morain” method).
As no explanation is provided in [34], we first sketch one approach to the CM method and describe
how it leads to the method from [34]. We then use this description to get a more general method,
and indicate how further generalizations can be obtained.

3.1 The CM method

We refer to [3, Chapter 18], [48], and the references therein for all details of the method sketched
here. In the SEA-based ECC parameter selection described in Section 2 one selects a prime field
Fp and then keeps selecting elliptic curves over Fp until the order of the elliptic curve group
has a desirable property. Checking the order is relatively cumbersome, making this type of ECC
parameter selection a slow process. Roughly speaking, the CM method switches around the order
of some of the above steps, making the process much faster at the expense of a much smaller
variety of resulting elliptic curves: first primes p are selected until a trivial to compute function of
p satisfies a desirable property, and only then an elliptic curve over Fp is determined that satisfies
one’s needs.

The standard CM method works as follows. Let d 6= 1, 3 be a square-free positive integer and let
Hd(X) be the Hilbert class polynomial1 of the imaginary quadratic field Q(

√
−d). If d ≡ 3 mod 4

let m = 4 and s = 1, else let m = 1 and s = 2. Find integers u, v such that u2 + dv2 equals
mp for a suitably large prime p and such that p + 1 ± su satisfies the desired property (such as
one of p + 1 ± su prime, or both prime for perfect twist security). Compute a root j of Hd(X)

1 Obviously, we could have used Weber polynomials instead. Here we explain and generalize the method
from [34] and therefore use Hilbert polynomials because those were the ones used in that paper.

modulo p, then the pair
(−27j
4(j−123) ,

27j
4(j−123)

)
∈ F2

p defines an elliptic curve E over Fp such that

#E(Fp) = p+1±su (and #Ẽ(Fp) = p+1∓su). Finally, use scalar multiplications with a random
element of E(Fp) to resolve the ambiguity. For d ≡ 3 mod 4 the case u = 1 should be excluded
because it leads to anomalous curves.

The method requires access to a table of Hilbert class polynomials or their on-the-fly computa-
tion. Either way, this implies that only relatively small d-values can be used, thereby limiting the
resulting elliptic curves to those for which the “complex-multiplication field discriminant” (namely,
d) is small. The degree of Hd(X) is the class number h−d of Q(

√
−d). Because h−d = 1 precisely

for d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} (assuming square-freeness), for those d-values the root com-
putation and derivation of the elliptic curve become a straightforward one-time precomputation
that is independent of the p-values that may be used. This is what is exploited in [34], as further
explained, and extended to other d-values for which h−d is small, in the remainder of this section.

3.2 The CM method for class numbers at most three

In [34] a further simplification was used to avoid the ambiguity in p + 1 ± u. Here we follow the
description from [56, Theorem 1], restricting ourselves to d > 1 with gcd(d, 6) = 1, and leaving
d ∈ {3, 8} from [34] as special cases. We assume that d ≡ 3 mod 4 and aim for primes p ≡ 3 mod 4
to facilitate square root computation in Fp. It follows that

(−1
p

)
= −1.

Let Hd(X) be as in Section 3.1. If d ≡ 3 mod 8 let s = 1, else let s = −1. As above, find
integers u > 1, v such that u2 + dv2 equals 4p for a (large) prime p ≡ 3 mod 4 for which the
numbers p+ 1± u are (almost) prime, and for which

a = 27d 3
√
j and b = 54sd

√
d(123 − j)

are well-defined in Fp, where j is a root of Hd(X) modulo p. Then for any non-zero c ∈ Fp, the
pair (c4a, c6b) ∈ F2

p defines an elliptic curve E over Fp such that #E(Fp) = p + 1 −
(
2u
d

)
u (and

#Ẽ(Fp) = p+ 1 +
(
2u
d

)
u).

As an example, let d = 7, so s = −1. The Hilbert class polynomial H7(X) of Q(
√
−7) equals

X + 153, which leads to j = −153, a = −34 · 5 · 7, and b = −54 · 7
√

7(123 + 153) = −2 · 36 · 72.
With c = 1

3 we find that the pair (−35,−98) defines an elliptic curve E over any prime field Fp

with 4p = u2 + 7v2 and that #E(Fp) = p+ 1−
(
2u
7

)
u.

Similarly, H11(X) = X + 215 for d = 11. With s = 1 this leads to j = −215, a = −25 · 23 · 11 =
−9504, and b = 2 · 33 · 11

√
11(123 + 215) = 365904. For any p ≡ 3 mod 4 the pair (−9504, 365904)

defines an elliptic curve E over Fp for which #E(Fp) = p+ 1−
(
2u
11

)
u, where 4p = u2 + 11v2. This

is the twist of the curve for d = 11 in [34].

The elliptic curves corresponding to the four d-values with h−d = 1 and d > 11 are derived in
a similar way, and are listed in Table 2. The two remaining cases with h−d = 1 listed in Table 2
are dealt with as described in [2, Theorem 8.2] for d = 3 and [47] for d = 8.

For d = 91, the class number h−91 of Q(
√
−91) equals two and H91(X) = X2 + 217 · 33 ·

5 · 227 · 2579X − 230 · 36 · 173 has root j =
(
−24 · 3(227 + 32 · 7

√
13)
)3

. It follows that a =

−24 · 34 · 7 · 13(227 + 32 · 7
√

13) and b = 24 · 36 · 72 · 11 · 13(13 · 71 + 28
√

13) so that with c = 1
3

we find that the pair (−330512 − 91728
√

13, 103479376 + 28700672
√

13) defines an elliptic curve
E over any prime field Fp with p ≡ 3 mod 4 and

(
13
p

)
= 1, and that #E(Fp) = p + 1 −

(
2u
91

)
u

where 4p = u2 + 91v2.

Table 2 lists nine more d-values for which h−d = 2, all with d ≡ 3 mod 4: for those with
gcd(d, 6) = 1 the construction of the elliptic curve goes as above for d = 91, the other three (all
with gcd(d, 6) = 3) are handled as shown in [30]. The other d-values for which h−d = 2 also have
gcd(d, 6) 6= 1 and were not considered (but see [30]). The example for h−d = 3 in the last row of
Table 2 was taken from [30].

Table 2: Elliptic curves for fast ECC parameter selection. Each row contains a value d, the class number
h−d of the imaginary quadratic field Q(

√
−d) with discriminant −d, the root used (commonly referred to

as the j-invariant), the elliptic curve E = Ea,b, the constraints on the prime p and the values u and v, the

value s such that #E(Fp) = p+ 1− su, and with γ and γ̃ denoting fixed factors of #E(Fp) and #Ẽ(Fp),
respectively.

h−d d j-invariant a, b p, u, v ∈ Z>0 s {γ} ∪ {γ̃}

1

3 0 0, 16
u2 + 3v2 = 4p,
p ≡ 1 mod 3,
u ≡ 1 mod 3,
v ≡ 0 mod 3

−1 {1, 9}

8 203 −270,−1512
u2 + 2v2 = p,
u ≡ 1 mod 4
if p ≡ 3 mod 16,
u ≡ 3 mod 4
if p ≡ 11 mod 16

2 {2}

7 −153 −35,−98

u2 + dv2 = 4p,
u > 1

(
2u
d

)

{8}

11 −323 −9504, 365904 {1, 9}

19 −963 −608, 5776

{1}

43 −9603 −13760, 621264

67 −52803 −117920, 15585808

163 −6403203 −34790720, 78984748304

2

91 −483(227 + 63
√

13)3
−330512 − 91728

√
13,

103479376 + 28700672
√

13

115 −483(785 + 351
√

5)3
−1444400 − 645840

√
5,

944794000 + 422522880
√

5

187 −2403(3451 + 837
√

17)3
−51626960 − 12521520

√
17,

+201921077072 + 48973056000
√

17

235 −5283(8875 + 3969
√

5)3
−367070000 − 164157840

√
5,

3828113058000 + 1711984189440
√

5

403 −2403(2809615 + 779247
√

13)3
−90581987600 − 25122923280

√
13,

1399216(10605743499 + 2941504000
√

13)

427 −52803(236674 + 30303
√

61)3
−177865244480 − 22773310560

√
61,

1099951(37121542375 + 4752926464
√

61)

51 −483(4 +
√

17)2(5 +
√

17)3
−245616 − 59568

√
17,

66257296 + 16069760
√

17

{1, 3}123 −4803(32 + 5
√

41)2(8 +
√

41)3
−580796160 − 90705120

√
41,

7619012947280 + 1189889913856
√

41

267 −2403(500 + 53
√

89)2(625 + 53
√

89)3
−12015034710000 − 1273591132080

√
89,

9968(2274273163768531 + 241072473215000
√

89)

35 −163(15 + 7
√

5)3
−226800 − 105840

√
5,

60858000 + 27095040
√

5

{1, 9}
3 243

−1603(151022371885959

+104713064226304 3√3

−72603983653110 3√9)

−1560 + 720 3√9,

32258 − 11124 3√3 − 7704 3√9

(−2α
p

)(2u
243

)
α = 2 − 3√9

3.3 The CM method for larger class numbers

In this section we give three examples to illustrate how larger class numbers may be dealt with,
still using the approach from Section 3.2. For each applicable d with h−d < 5 a straightforward
(but possibly cumbersome) one-time precomputation suffices to express one of the roots of Hd(X)
in radicals as a function of the coefficients of Hd(X), and to restrict to primes p for which the
root exists in Fp. For larger h−d there are in principle two obvious approaches (other possibilities
exist, but we do not explore them here). One approach would be to exploit the solvability by
radicals of the Hilbert class polynomial [29] for any d, to carry out the corresponding one-time
root calculation, and to restrict, as usual, to primes modulo which a root exists. The other approach
is to look up Hd(X) for some appropriate d, to search for a prime p such that Hd(X) has a root
modulo p, and to determine it. In our application, the precomputation approach leads to relatively
lightweight online calculations, which for the last approach quickly become more involved. We give
examples for all three cases, with run times obtained on a 2.7GHz Intel Core i7-3820QM.

For d = 203 we have h−203 = 4 and H203(X) = X4 + 218 · 3 · 53 · 739 · 378577789X3 − 230 · 56 ·
17 · 1499 · 194261303X2 + 254 · 59 · 116 · 4021X + 266 · 512 · 116 with root −214 · 53j′ where

j′ = 3357227832852 + 623421557759
√

29 + 3367

√
29(68565775894279681 + 12732344942060216

√
29).

This precomputation takes an insignificant amount of time for any polynomial of degree at most
four. With c = 24·33·203 it follows that the pair

(
−5c 3
√

4j′, c
√

203(33 + 28 · 53j′)
)

defines an elliptic

curve E over any prime field Fp that contains the various roots, and that #E(Fp) = p+1−
(

2u
203

)
u

where 4p = u2+203v2. The online calculation can be done very quickly if the choice of p is restricted
to primes for which square and cube roots can be computed using exponentiations modulo p.

As an example of the second approach, for d = 47 the polynomial H47(X) has degree five and
root 25j′, with the following expression by radicals for j′:

13
3(

7453991996007968795256512−2406037696832339815
√

5+A(40891436090237416B−280953360772792427120048109055211
√

5/B)
)
/(2

3/5
C)

−13
(
5364746311921861372 − 856800988085

√
5 − A(29162309591B − 135009745365087109801596264

√
5)

)
/(2C

2
)
1/5

+(3861085845907 − 1237935
√

5)/(2 · 133C1/5
) − 18062673 + 13C

1/5
/2

2/5
,

where

A =
67206667

827296299281
, B =

√
47(119957963395745 + 21781710063898

√
5)

and

C = −20713746281284251563127089881529 + 16655517449486339268909175
√

5− D

B

for

D = 52 · 112 · 19 · 23 · 29 · 31 · 41 · 47
(
206968333412491708847− 46149532702509158373845

√
5
)
.

This one-time precomputation took 0.005 seconds (using Maple 18). Elliptic curves and group
orders follow easily, for properly chosen primes. In principle such root-expressions can be tabulated
for any list of d-values one sees fit, but obtaining them, in general and for higher degrees, may be
challenging.

As an example of the final approach mentioned above, for d = 5923 the polynomial H5923(X)
has degree seven and equals

X
7

+2
15 · 33 · 53 · 7 · 31 · 127 · 2429520931 · 136238689771578256215972490257607347497085841560925219572863881662960257476074094637X6

−2
30 · 37 · 56 · 7 · 62983 · 1112240226499 · 19292428007338985647320491911265071 · 171556657076224699685934416851052653070777X5

+2
45 · 39 · 59 · 7 · 53 · 97 · 769 · 259381 · 4437462560116423 · 97604219520630586719251956183 · 27147567165140472264577022190878351X4

−2
60 · 312 · 512 · 7 · 31 · 99208777 · 34069172420656302782993334479869 · 2115819005901949373115573163942760496221424793X3

+2
75 · 316 · 515 · 7 · 113 · 10477 · 47581 · 240853 · 104531840353 · 10353927562807 · 35530273517694879272275348898856662128831X2

−2
90 · 318 · 518 · 7 · 116 · 473 · 727 · 7603931 · 88452227997949 · 1749307074347088305263628366419199311589957X

+(2
35 · 37 · 57 · 113 · 17 · 23 · 41 · 472 · 71 · 593 · 659 · 1103 · 1109)3.

Given H5923(X) and 128-bit security, we look for 123-bit integers u and v such that 4p = u2 +
5923v2 for a prime p for which H5923(X) has a root j modulo p and such that 3

√
j and

√
j exist in

Fp and can easily be calculated. For the present case it took 0.11 seconds (using Mathematica 9)
to find

u = 9798954896523297426122257220379636584,

v = 6794158457021689958168162443422271774

which leads to the 256-bit prime

p = 68376297247017003283970261221870401697343820120616991149309517708508634100051

and

j = 5424365599110950567709761214027360693147818342174987232449996549675868443312.

Because p ≡ 2 mod 3 all elements of Fp have a cube root (in particular 3
√
j = j

2p−1
3 mod p),(

j
p

)
= 1 and p ≡ 3 mod 4. The elliptic curve and group order follow in the customary fashion.

From our results and run times it is clear that none of these approaches (one-time root pre-
computations, or online root calculation) is compatible with the requirements on the class number
(at least 106 in [39]) or the discriminant (at least 2100 in [9]). In the remainder of this paper we
focus on the approach from Section 3.2. Our approach thus does not comply with the class number
or discriminant requirements from [9, 39], security requirements that are, as far as we know, not
supported by published evidence.

4 Ephemeral ECC parameter generation

We describe how to use Table 2 to online generate ephemeral ECC parameters, improving the
speed of the search for a prime p and curve E over Fp compared to the method from [34, Section
3.2], and while allowing an additional security requirement to the ones from [34] (without explicitly
mentioning the ones already in place in [34]; refer to Section 5 for details). In the first place, on
top of the trivial modifications to handle the extended table and determination of a base point as
mentioned in [34, Section 3.6], we introduce the following additional search criteria:

1. Efficiency considerations.
(a) Montgomery friendly modulus. The prime p may be chosen as −1 modulo 264 or modulo

232 to allow somewhat faster modular arithmetic.
(b) Conversion friendly curve. A small positive factor f may be prescribed that must divide

#E(Fp) (such as for instance f = 4 to allow conversion to a Montgomery curve).

2. Twist security. Writing #E(Fp) = fcq and #Ẽ(Fp) = c̃q̃, with f ∈ Z>0 as above, cofactors

c, c̃ ∈ Z>0, and primes q and q̃, independent upper bounds ` and ˜̀ on the total security loss

may be specified such that fc < 2` and c̃ < 2
˜̀
. The roles of E and Ẽ may be reversed to meet

these requirements faster (with f always a factor of the “new” #E(Fp), which is automatically
the case if p ≡ 3 mod 4 and f = 4).

These new requirements still allow a search as in [34, Section 3.2] where, based on external param-
eters and a random value, an initial pair (u0, v0) is chosen and the pairs (u, v) ∈ {(u0, v0 + i) : i ∈
[0, 255]} are inspected on a one-by-one basis for each of the eight rows of [34, Table 1] until a pair is
found that corresponds to a satisfactory p and E. If the search is unsuccessful (after trying 256 ∗ 8
possibilities), the process is repeated with a fresh random value and new initial pair (u0, v0). With

m = 1, c = 32, and no restrictions on #Ẽ(Fp), it required on average less than ten seconds on a
133MHz Pentium processor to generate a satisfactory ECC parameter set at the 90-bit security
level. Though this performance was apparently acceptable at the time [34] was published, it does
not bode well for higher security levels and, in particular, when twist security is required as well.
This is confirmed by experiments (cf. runtimes reported in Table 3 below).

Sieving-based search. Secondly, we show how the performance of the search can be considerably
improved compared to [34]. Because, for a fixed d, the prime p and both group orders are quadratic
polynomials in u and v, sieving with a set P of small primes can be used to quickly identify
(u, v) pairs that do not correspond to a satisfactory p or E. The remaining pairs, for which
the candidates for the prime and for the group order(s) do not have factors in P , can then be
subjected to more precise inspection, similar to the search from [34]. We sketch our sieving-based

search for ECC parameters as in Table 2 where we assume that min(2` − 1, 2
˜̀ − 1) = f and

max(2` − 1, 2
˜̀− 1) ∈ {f,∞}, i.e., we settle for perfect twist security (except for the factor f) or

no twist security at all. More liberal choices require a more cumbersome approach to the sieving;
we do not elaborate.

Let (u0, v0) be chosen as above, but restricted to certain residue classes modulo small primes
to satisfy a variety of divisibility criteria depending on the above choices of f , `, and ˜̀, and
with respect to Montgomery friendliness. We found it most convenient to fix u0 and to sieve over
regularly spaced (v0 + i)-values, again restricted to certain residue classes for the same reasons
(including divisibility of #E(Fp) by f in case f > 1), but using a much larger range of i-values
than in [34]. Fixing u0, the first at most sixteen compatible d-values from Table 2 are selected;
only ten d-values may remain and depending on the parity of u0 the value d = 7 may or may
not occur. Let d0, d1, . . ., dk−1 be the selected d-values, with 10 ≤ k ≤ 16. With I the set of
distinct i-values to be considered, we initialize for all i ∈ I the sieve-location si as 2k − 1 (i.e., all
“one”-bits in the k bit-positions indexed from 0 to k − 1), while leaving the constant difference
between consecutive i-values unspecified for the present description. We mostly used difference 16,
using difference 4 only for d = 8, and using a substantially larger value if the prime p must be
Montgomery friendly.

For each dj and each sieving-prime ς ∈ P up to six roots rjς modulo ς of up to three quadratic
polynomials are determined (computing square roots using ς+1

4 -th powering for ς ≡ 3 mod 4 and
using the Tonelli-Shanks algorithm [20, 2.3.8] otherwise); the polynomials follow in a straightfor-
ward fashion from Table 2. To sieve for dj the following is done for all ς ∈ P and for all roots
rjς : all sieve-locations si with i ∈ (rjς + ςZ) ∩ I are replaced by si ∧ 2k − 2j − 1 (thus setting a
possible “one”-bit at bit-position j in si to a “zero”-bit, while not changing the bits at the other
k − 1 bit-positions in si).

A “one”-bit at bit-position j in si that is still “one” after the sieving (for all indices, all
sieving primes, and all roots) indicates that discriminant −dj and pair (u0, v0 + i) warrants closer
inspection because all relevant related values are free of factors in P . If the search is unsuccessful
(after considering k|I| possibilities), the process is repeated with a new sieve. If for all indices j
and all ς ∈ P all last visited sieve locations are kept (at most 6k|P | values), recomputation of the
roots can be avoided if the same (u0, v0) is re-used with the “next” interval of i-values.

Some savings may be obtained, in particular for small ς values, by combining the sieving for
identical roots modulo ς for distinct indices j. Or, one could make just a single sieving pass per
ς-value but simultaneously for all indices j and all roots rjς modulo ς, by gathering (using “∧”),
for that ς, all sieving information (for all indices and all roots) for a block of ς consecutive sieve
locations, and using that block for the sieving.

Parameter reconstruction. A successful search results in an index j and value i such that dj
and the prime corresponding to the (u, v)-pair (u0, v0 + i) leads to ECC parameters that satisfy
the aimed for criteria. Any party that has the information required to construct (u0, v0) can
use the pair (j, i) to instantaneously reconstruct (using Table 2) those same ECC parameters,
without redoing the search. It is straightforward to arrange for an additional value that allows
easy (re)construction of a base point.

Implementation results. We implemented the basic search as used in [34] and the sieving based
approach sketched above for generic x86 processors and for ARM/Android devices. To make the
code easily portable to other platforms as well we used the GMP 6.0 library [24] for multi-precision
integer arithmetic after having verified that modular exponentiation (crucial for an efficient search)
offers good performance on ARM processors. Making the code substantially faster would require
specific ARM processor dependent optimization. We used the Java native interface [46] and the

Android native development kit [26] to allow the part of the application written in Java to call the
GMP-based C-routines that underlie the compute intensive core. To avoid making the user inter-
face non-responsive and avoid interruption by the Android run-time environment, a background
service (IntentService class) [27] is instantiated to run this core independently of the thread that
handles the user interface.

Table 3 lists detailed results for the 128-bit security level, using empirically determined (and
close to optimal, given the platform) sieving bounds, lengths, etc. The implementations closely
followed the description above, but we omit many details that were used to obtain better perfor-
mance, such as precomputations and extra conditions, and to make sure that a variety of security
requirements is met (more on this in Section 5). Table 4 shows average timings in milliseconds
for different security levels in two cases: prime order non twist-secure generation and perfect twist
security. The x86 platform is an Intel Core i7-3820QM, running at 2.7GHz under OS X 10.9.2
and with 16GB RAM. The ARM device is a Samsung Galaxy S4 smartphone with a Snapdragon
600 (ARM v7) running at 1.9GHz under Android 4.4 with 2GB RAM. Key reconstruction takes
around 1.5 (x86) and 10 (ARM) milliseconds.

Table 3: Performance results in milliseconds for parameter generation at the 128-bit security level, with
`, ˜̀, f , P , and I as above, the “MF”-column to indicate Montgomery friendliness, and µ the average and
σ the standard deviation.

x86, over 10 000 runs ARM, over 3000 runs
basic sieving basic sieving

` ˜̀ {`} ∪ {˜̀} f MF µ σ µ σ |P | |I| µ σ µ σ |P | |I|
not twist secure:

{6,∞} 8.2 4.8 7.8 3.6 100 210 64 47 50 30 150 212

6 9.6 6.2 8.6 3.8 200 210 72 58 59 35 250 212

{6,∞} X 8.3 5.0 7.8 3.7 100 210 64 44 49 29 200 212

6 X 9.7 6.4 8.7 3.8 200 210 71 55 60 33 250 212

{6,∞} 4 8.4 5.2 7.9 4.0 100 210 64 49 54 35 200 212

6 4 9.7 6.4 8.8 4.7 200 210 71 57 61 36 250 212

{6,∞} 4 X 8.6 5.2 7.9 3.8 100 210 62 48 50 29 200 212

6 4 X 9.7 6.4 8.6 3.7 200 210 72 58 56 35 250 212

{1,∞} 8.8 5.4 8.0 4.0 100 210 65 47 53 32 200 212

1 10.4 7.1 8.9 4.0 200 210 77 61 58 36 250 212

{1,∞} X 8.8 5.5 8.0 3.9 100 210 65 50 50 31 200 212

1 X 10.4 7.0 8.8 3.9 200 210 76 62 57 35 250 212

twist secure:

{6} 148 143 46 33 700 214 1280 1271 357 304 750 215

1 6 167 162 55 44 800 214 1432 1392 410 335 750 215

{1, 6} 160 151 49 34 800 214 1350 1341 392 326 750 215

{1} 180 177 49 40 800 214 1433 1372 390 325 750 215

{6} X 143 139 50 36 700 214 1301 1270 390 311 750 215

1 6 X 165 161 51 38 800 214 1428 1321 409 315 750 215

{1, 6} X 154 148 49 35 800 214 1327 1300 380 316 750 215

{1} X 172 168 48 36 800 214 1491 1428 378 326 750 215

{6} 4 162 158 49 34 700 214 1307 1245 390 319 750 215

{6} 4 X 165 159 50 38 700 214 1287 1253 385 318 750 215

Table 4: Performance results in milliseconds for parameter generation at different security levels: 80-bit,
112-bit, 128-bit, 160-bit, 192-bit and 256-bit. In comparison with Table 3 the Montgomery friendliness
option is always disabled and f = 1.

x86 ARM
basic sieving runs basic sieving runs

k {`} ∪ {˜̀} µ µ |P | |I| µ µ |P | |I|

80

{
{1,∞}
{1}

3 3 50 29 10000 22 19 100 211 100
31 10 200 212 1000 197 61 450 212 100

112

{
{1,∞}
{1}

6 6 100 29 10000 47 38 200 210 100
114 30 800 214 1000 981 214 650 214 100

128

{
{1,∞}
{1}

9 8 100 210 10000 65 53 250 212 3000
180 49 800 214 10000 1433 390 750 215 3000

160

{
{1,∞}
{1}

19 16 300 211 1000 143 87 200 210 100
474 95 800 214 1000 5425 808 750 215 100

192

{
{1,∞}
{1}

36 25 400 212 1000 265 169 20 210 100
1144 222 1200 216 1000 10785 2231 900 217 20

256

{
{1,∞}
{1}

105 70 400 213 1000 14543 575 450 211 100
4635 994 1200 216 1000 50 sec 10 sec 1200 217 10

5 Security criteria

In this section we review security requirements that are relevant in the context of ECC. Most are
taken from [9], the order and keywords of which we roughly follow for ease of reference, and some
are from [22]. We discuss to what extent these requirements are met by the parameters generated
by our method. Generally speaking our approach is to focus on existing threats, as dealing with
non-existing ones only limits the parameter choice while not serving a published purpose.

ECDLP security. For the security of ECC, the discrete logarithm problem in the group of points
of the elliptic curve must be hard. In this first category of security requirements one attempts to
make sure that elliptic curve groups are chosen in such a way that this requirement is met.

– Pollard rho attack becomes ineffective if the group is chosen in such a way that a sufficiently
large prime factor divides its order. This is a straightforward “key-length” issue (cf. [36]). Using
a 128-bit prime field cardinality with ` ≤ 5, as suggested by Table 3, is more than sufficient.

– Transfers refer to the possibility to embed the group into a group where the discrete logarithm
problem is easy, as would be the case for “anomalous curves” and for curves with a low
“embedding degree”. For the former, the elliptic curve group over the finite field Fp has
cardinality p and can be effectively embedded in the additive group Fp, allowing trivial solution
of the elliptic curve discrete logarithm problem (cf. [49, 51, 54]). By construction our method
avoids these curves.
For the latter, the group can be embedded in the multiplicative group F×

pk
of Fpk for a low

embedding degree k. To avoid those curves, we follow the approach from [34] which ties the
smallest permissible value for k to the published difficulty of finding discrete logarithms in
F×

pk
. It would be trivial, and would have negligible effect on our performance results, to adopt

the “overkill” approach favored by [9, 39, 13], but we see no good reason to do so.
– Complex-multiplication field discriminants refers to the concern that for small values of

the discriminant (−d in our case) there are endomorphism-based speedups for the Pollard rho
attack [61, 25]. For instance, the first row of Table 2 leads to groups with the same automor-
phism group [53, Chapter III.10] as the pairing-friendly groups proposed in [4] and thereby
to an additional speedup of the Pollard rho attack by a factor of

√
3. We refer to [21, 14] for

a discussion of the practical implications and note that such speedups are of no concern for
128-bit prime field cardinalities with ` ≤ 5.
Despite the fact that the authors of [9] agree with this observation (cf. their quotation cited
in the introduction), and as already mentioned in Section 2, [9] chooses a lower bound of 2100

for the absolute value of the complex-multiplication field discriminant while [39] settles for
roughly 240. Neither bound can be satisfied by out method, as amply illustrated in Section 3.3.
Until a valid concern is published, we see no reason to abandon our approach.

– Rigidity is the security requirement that the entire parameter generation process must be
transparent and exclude the possibility that malicious choices are targeted. Assuming a trans-
parent process to generate the initial pair (u0, v0) (for instance by following the approach
described in [34]) the process proposed here is fully deterministic, fully explained, and leaves
no room for trickery. Note also that a third party is excluded and that the affected parties (the
public key owner or the two communicating parties engaging in the Diffie-Hellman protocol)
are the only ones involved in the parameter generation process.

ECC security. Properly chosen groups can still be used in insecure ways. Here we discuss a
number of precautions that may be taken to avoid some attacks that are aimed at exploiting the
way ECC may be used.

– Constant-time single-coordinate scalar multiplication (“Ladders” in [9]) makes it harder
to exploit timing differences during the most important operation in ECC, the multiplication
of a group element by a scalar that usually needs to be kept secret, as such differences may
reveal information about the scalar (where it should be noted that the “single-coordinate”
part is just for efficiency and ease of implementation). For all Weierstrass curve parameteri-
zations used here constant-time single-coordinate scalar multiplication can be achieved using
the method from [15]. If efficiency is a bigger concern than freedom of choice, one may impose
the requirement that the group order is divisible by four (“f = 4” in Table 3) as it allows con-
version to Montgomery form [42] and thereby a more efficient constant-time single-coordinate
scalar multiplication [41].

– Invalid-point attacks (“Twists” in [9]) refer to attempts to exploit a user’s omission to
verify properties of alleged group elements received. They are of no concern if the proper
tests are consistently performed (at the cost of some performance loss) or if a closed software
environment can be relied upon. Some are also thwarted if the curve’s twist satisfies the same
ECDLP security requirements as the curve itself, an approach that thus avoids implementation
assumptions while replacing recurring verification costs by one-time but more costly parameter
generation: for one-time parameter usage one-time verification is less costly (than relatively
expensive generation of twist secure parameters), for possibly repeated usage (as in certified
keys) twist secure parameters may be preferred. Our parameter selection method includes the
twist security option and thus caters to either scenario. Below we elaborate on the various
attack possibilities.

Small-subgroup attacks. If the group order is not prime but has a relatively small factor h,
an attacker may send a group element of order h (as opposed to large prime order), learn
the residue class modulo h of the victim’s secret key, and thus obtain a speedup of the
Pollard rho attack by a factor of

√
h. It suffices to ascertain that group elements received

do not have order dividing h, or to generate the parameters such that the group order is
prime (one of our options).

Invalid-curve attacks. An attacker may send elements of different small prime orders be-
longing to different appropriately selected elliptic curve groups, all distinct from the proper
group. Each time the targeted victim fails to check proper group membership of elements
received the attacker learns the residue class modulo a new small prime of the victim’s
secret key, ultimately enabling the attacker to use the Chinese remainder theorem to re-
cover the key [10]. This attack cannot be avoided at the parameter selection level, but is
avoided by checking that each element received belongs to the right group (at negligible
cost). Also, using parameters just once renders the attack ineffective.

Twist attacks against single-coordinate scalar multiplication. Usage of single coordi-
nates goes a long way to counter the above invalid-curve attacks, because each element
that does not belong to the group of the curve automatically belongs to the group of the
twist of the curve. Effective attacks can thus be avoided either by checking membership
of the proper group (i.e., not of the group of the twist) or by making sure that the group
of the twist of the curve satisfies the same security requirements as the group of the curve
itself (at a one-time twist secure parameter generation cost, avoiding the possibly recurring
membership test). As mentioned above, it depends on the usage scenario which method is
preferred; for each scenario our method offers a compatible option.

– Exceptions in scalar multiplication (“Completeness” in [9]). Depending on the curve
parameterization, the implementation of the group law may distinguish between adding two
distinct points and doubling a point. Using addition where doubling should have been used may
be leveraged by an attacker to learn information about the secret key [31]. Either a check must
be included (while maintaining constant-time execution, as in [13]) or a “complete” addition
formula must be used, i.e., one that works even if the two points are not distinct. This leads to
a somewhat slower group law for our Weierstrass curve parameterizations, but if they are used
along with f = 4 in Table 3 the parameterization can be converted to Edwards or Montgomery
form, which are both endowed with fast complete formulae for the group law [8], [5].

– Indistinguishability of group elements and uniform random strings is important for ECC
applications such as censorship-circumvention protocols [9], but we are not aware of its im-
portance for the applications targeted in this paper. We refer to [7, 23] for ways to achieve
indistinguishability using families of curves in Montgomery, Edwards or Hessian form and
to [57] for a solution that applies to the Weierstrass curve parameterization (which, however,
doubles the lengths of the strings involved). Either way, our methods can be made to deal
with this issue as well.

– Strong Diffie-Hellman problem (not mentioned in [9]). In [18] it is shown that for protocols
relying on the ECC version of the strong Diffie-Hellman problem the large prime q dividing
the group order must be chosen such that q − 1 and q + 1 both have a large prime factor.
Although several arguments are presented in [17, Section B.1] why this attack is “unlikely to
be feasible”, [17] nevertheless continues with “as a precautionary measure, one may want to
choose elliptic curve domain parameters that resist Cheon’s attack by arranging that q−1 and
q+ 1 have very large prime factors”. Taking this precaution, however, would add considerable
overhead to the parameter generation process. Our methods can in principle be adapted to
take this additional requirement into account, but doing so will cause the parameter genera-
tion timings to skyrocket. The attack is not considered in [9], and none of the standardized
parameter choices that we inspected take the precaution recommended in [17].

Side-channel attacks are physical attacks on the device executing the parameter generation
process or the cryptographic protocols. Most of these attacks require multiple runs of the ECC
protocol with the same private key (cf. [22, Table 1]) and are thus of no concern in an ephemeral
key agreement application. There are three attacks for which a single protocol execution suffices:

Simple power analysis (SPA) attacks are avoided when using a scalar multiplication algo-
rithm ensuring that the sequence of operations performed is independent of the scalar.

Fault induced invalid curve attacks can be expected to require several trials before a weak
parameter choice is hit, and can be prevented by enforcing more sanity checks in the scalar
multiplication [22].

Template attacks may recover a small number of bits of the secret key and can be avoided using
one of the randomization techniques mentioned in [22].

6 Conclusions and future work

We showed how communicating parties can efficiently generate fresh ECC parameters every time
they need to agree on a session key, generalizing and improving the method from [34]. Our major

modifications consist of the use of sieving to speed up the generation process, a greater variety
of security and efficiency options, and the inclusion of eleven more curve equations. Furthermore,
we explained how to further generalize our method and showed that doing so may have limited
practical value. We demonstrated the practical potential of our method on constrained devices,
presented performance figures of an implementation on an ARM/Android platform, and discussed
relevant security issues.

Future work could include further efficiency enhancements by targeting specific ARM proces-
sors, direct inclusion of Montgomery and Edwards forms, extension to genus 2 hyperelliptic curves
and, much more challenging and important, improving elliptic curve point counting methods to
allow on-the-fly generation of ephemeral random elliptic curves over prime fields. Unfortunately,
we do not know yet how to approach the latter problem, but genus 2 extension of our methods
seems to be quite within reach. We conclude with a few remarks on this issue.

Extension to genus 2 hyperelliptic curves. Jacobians of hyperelliptic curves of genus 2 al-
low cryptographic applications similar to elliptic curves [33] and, as recently shown in [12], offer
comparable or even better performance. Genus 2 hyperelliptic curves may thus be a worthwhile
alternative to elliptic curves and, in particular given the lack of a reasonable variety of stan-
dardized genus 2 curves, generalization of our methods to the genus 2 case may have practical
appeal. In [60] it is described how this could work. The imaginary quadratic fields are replaced
by quartic CM fields and the j-invariant (a root of the Hilbert class polynomial) is replaced by
three j-invariants which are usually referred to as Igusa’s invariants. In [59] a table is given listing
equations with integer coefficients of genus 2 hyperelliptic curves having complex multiplication by
class number one quartic CM fields and class number two quartic CM fields. The three algorithms
presented at the beginning of [60, Section 8] can then be used to easily compute the orders of the
Jacobians of these curves over suitably chosen prime fields. The main remaining problem seems to
be to resolve the ambiguity between the order of the Jacobian of the hyperelliptic curve and of its
quadratic twist other than by using scalar multiplication. We leave the solution of this problem –
and implementation of the resulting genus 2 parameter selection method – as future work.

Acknowledgement. Thanks to Adrian Antipa for bringing the strong Diffie-Hellman security
requirement and additional precaution from [17, Section B.1] to our attention, and to René Schoof
for inspiring this paper by providing the original table in [34].

References

1. D. F. Aranha, P. S. L. M. Barreto, C. C. F. P. Geovandro, and J. E. Ricardini. A note on high-security
general-purpose elliptic curves. IACR Cryptology ePrint Archive, 2013:647, 2013.

2. A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp, 61:29–68, 1993.
3. R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren. Handbook of

Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, 2006.
4. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and

S. E. Tavares, editors, Selected Areas in Cryptography, volume 3897 of LNCS, pages 319–331. Springer,
2005.

5. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, editors, Public Key Cryptography – PKC 2006, volume 3958 of Lecture Notes in Computer
Science, pages 207–228. Springer, Heidelberg, 2006.

6. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, T. Lange, R. Niederhagen, and C. van
Vredendaal. How to manipulate curve standards: a white paper for the black hat. Cryptology ePrint
Archive, Report 2014/571, 2014. http://eprint.iacr.org/2014/571.

7. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: elliptic-curve points indistinguish-
able from uniform random strings. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, CCS ’13, pages 967–980, New York, NY, USA, 2013. ACM.

8. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In K. Kurosawa, editor,
Asiacrypt, volume 4833 of Lecture Notes in Computer Science, pages 29–50. Springer, Heidelberg, 2007.

9. D. J. Bernstein and T. L. Lange. Safecurves: choosing safe curves for elliptic-curve cryptography.
10. I. Biehl, B. Meyer, V. Müller, U. K. D. Wacana, and J. D. Wahidin. Differential fault attacks on

elliptic curve cryptosystems. pages 131–146. Springer-Verlag, 2000.

11. M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener. Minimal
key lengths for symmetric ciphers to provide adequate commercial security. http://www.schneier.

com/paper-keylength.pdf, January 1996.

12. J. W. Bos, C. Costello, H. Hisil, and K. Lauter. Fast cryptography in genus 2. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 194–210. Springer, 2013.

13. J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for cryptography: An
efficiency and security analysis. Cryptology ePrint Archive, Report 2014/130, 2014. http://eprint.
iacr.org/.

14. J. W. Bos, C. Costello, and A. Miele. Elliptic and hyperelliptic curves: A practical security analysis.
In H. Krawczyk, editor, Public Key Cryptography, volume 8383 of Lecture Notes in Computer Science,
pages 203–220. Springer, 2014.

15. E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In D. Naccache and
P. Paillier, editors, Public Key Cryptography – PKC 2002, volume 2274 of Lecture Notes in Computer
Science, pages 335–345. Springer, Heidelberg, 2002.

16. Certicom Research. Standards for efficient cryptography 2: Recommended elliptic curve domain pa-
rameters. Standard SEC2, Certicom, 2000.

17. Certicom Research. Standards for efficient cryptography 1: Elliptic curve cryptography (version 2.0).
Standard SEC1, Certicom, 2009.

18. J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In S. Vaudenay, editor, Eurocrypt
2006, volume 4004 of Lecture Notes in Computer Science, pages 1–11. Springer, Heidelberg, 2006.

19. D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology, 6(3):169–180, 1993.

20. R. Crandall and C. Pomerance. Prime Numbers: A Computational Perspective (second edition). Lec-
ture notes in statistics. Springer, 2005.

21. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation on curves with
automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing, editors, Asiacrypt 1999, volume 1716 of
Lecture Notes in Computer Science, pages 103–121. Springer, Heidelberg, 1999.

22. J. Fan and I. Verbauwhede. An updated survey on secure ecc implementations: Attacks, counter-
measures and cost. In D. Naccache, editor, Cryptography and Security: From Theory to Applications,
volume 6805 of Lecture Notes in Computer Science, pages 265–282. Springer Berlin Heidelberg, 2012.

23. P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In C. Boyd and
L. Simpson, editors, Information Security and Privacy, volume 7959 of Lecture Notes in Computer
Science, pages 203–218. Springer Berlin Heidelberg, 2013.

24. Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic Library, 2014. Available
at http://www.gmplib.org/.

25. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Improving the parallelized Pollard lambda search
on anomalous binary curves. Mathematics of Computation, 69(232):1699–1705, 2000.

26. Google. Android NDK. https://developer.android.com/tools/sdk/ndk/index.html.

27. Google. Android SDK guide. http://developer.android.com/guide/index.html.

28. T. C. Hales. The NSA Back Door to NIST. Notices of the AMS, 61(2):190–192, 2013.

29. G. Hanrot and F. Morain. Solvability by radicals from an algorithmic point of view. In Proceedings of
the 2001 International Symposium on Symbolic and Algebraic Computation, ISSAC ’01, pages 175–182,
New York, NY, USA, 2001. ACM.

30. N. Ishii. Trace of frobenius endomorphism of an elliptic curve with complex multiplication. Bulletin
of the Australian Mathematical Society, 70:125–142, 8 2004.

31. T. Izu and T. Takagi. Exceptional procedure attack on elliptic curve cryptosystems. In Y. Desmedt,
editor, Public Key Cryptography — PKC 2003, volume 2567 of Lecture Notes in Computer Science,
pages 224–239. Springer Berlin Heidelberg, 2002.

32. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, 1987.

33. N. Koblitz. Hyperelliptic cryptosystems. Journal of cryptology, 1(3):139–150, 1989.

34. A. K. Lenstra. Efficient identity based parameter selection for elliptic curve cryptosystems. In Pro-
ceedings of the 4th Australasian Conference on Information Security and Privacy, ACISP ’99, pages
294–302, London, UK, UK, 1999. Springer-Verlag.

35. A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve, volume 1554 of
Lecture Notes in Mathematics. Springer-Verslag, 1993.

36. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology, 14(4):255–
293, 2001.

37. A. K. Lenstra and B. Wesolowski. A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive,
Report 2015/366, 2015. http://eprint.iacr.org/2015/366.

38. H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics, 126(3):649–673,
1987.

39. M. Lochter and J. Merkle. Elliptic curve cryptography (ECC) brainpool standard curves and curve
generation. RFC 5639, 2010.

40. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Crypto 1985, volume
218 of Lecture Notes in Computer Science, pages 417–426. Springer, Heidelberg, 1986.

41. P. L. Montgomery. Speeding the Pollard and Elliptic Curve Methods of Factorization. Mathematics
of Computation, 48(177):243–264, 1987.

42. F. Morain. Edwards curves and cm curves. Technical report, 2009.
43. National Institute of Standards and Technology. Special publication 800-57: Recommendation for

key management part 1: General (revised). http://csrc.nist.gov/publications/nistpubs/800-

57/sp800-57-Part1-revised2_Mar08-2007.pdf.
44. National Security Agency. Fact sheet NSA Suite B Cryptography. http://www.nsa.gov/ia/

programs/suiteb_cryptography/index.shtml, 2009.
45. NIST. Workshop on Elliptic Curve Cryptography Standards 2015. http://www.nist.gov/itl/csd/

ct/ecc-workshop.cfm, June 2015.
46. Oracle. Java native interface.
47. A. R. Rajwade. Certain classical congruences via elliptic curves. J. London Math. Soc. (2), 8:60–62,

1974.
48. K. Rubin and A. Silverberg. Choosing the correct elliptic curve in the cm method. Mathematics of

Computation, 79(269):545–561, 2010.
49. T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous

elliptic curves. Commentarii Mathematici Universitatis Sancti Pauli, 47(1):81–92, 1998.
50. R. Schoof and P. R. E. Schoof. Counting points on elliptic curves over finite fields, 1995.
51. I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in

characteristic p. Mathematics of Computation, 1998.
52. D. Shumov and N. Ferguson. On the Possibility of a Back Door in the NIST SP800-90 Dual EC

PRNG. 2007.
53. J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Gradute Texts in Mathematics.

Springer-Verlag, 1986.
54. N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryptology, 12(3):193–

196, 1999.
55. B. Snow, June 2014. Private communication.
56. H. Stark. Counting points on cm elliptic curves. Rocky Mountain Journal of Mathematics, 26(3):1115–

1138, 09 1996.
57. M. Tibouchi. Elligator squared: Uniform points on elliptic curves of prime order as uniform random

strings. IACR Cryptology ePrint Archive, 2014:43, 2014.
58. U.S. Department of Commerce/National Institute of Standards and Technology. Digital Signature

Standard (DSS). FIPS-186-4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.

pdf.
59. P. B. van Wamelen. Examples of genus two cm curves defined over the rationals. Math. Comput.,

68(225):307–320, 1999.
60. A. Weng. Constructing hyperelliptic curves of genus 2 suitable for cryptography. Math. Comput.,

72(241):435–458, 2003.
61. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In S. Tavares and

H. Meijer, editors, Selected Areas in Cryptography – (SAC) 1998, volume 1556 of Lecture Notes in
Computer Science, pages 190–200. Springer New York, 1999.

