11 research outputs found
Urinary catecholamine excretion, cardiovascular variability, and outcomes in tetanus
Severe tetanus is characterized by muscle spasm and cardiovascular system disturbance. The pathophysiology of muscle spasm is relatively well understood and involves inhibition of central inhibitory synapses by tetanus toxin. That of cardiovascular disturbance is less clear, but is believed to relate to disinhibition of the autonomic nervous system. The clinical syndrome of autonomic nervous system dysfunction (ANSD) seen in severe tetanus is characterized principally by changes in heart rate and blood pressure which have been linked to increased circulating catecholamines. Previous studies have described varying relationships between catecholamines and signs of ANSD in tetanus, but are limited by confounders and assays used. In this study, we aimed to perform detailed characterization of the relationship between catecholamines (adrenaline and noradrenaline), cardiovascular parameters (heart rate and blood pressure) and clinical outcomes (ANSD, mechanical ventilation required, and length of intensive care unit stay) in adults with tetanus, as well as examine whether intrathecal antitoxin administration affected subsequent catecholamine excretion. Noradrenaline and adrenaline were measured by ELISA from 24-h urine collections taken on day 5 of hospitalization in 272 patients enrolled in a 2 × 2 factorial-blinded randomized controlled trial in a Vietnamese hospital. Catecholamine results measured from 263 patients were available for analysis. After adjustment for potential confounders (i.e., age, sex, intervention treatment, and medications), there were indications of non-linear relationships between urinary catecholamines and heart rate. Adrenaline and noradrenaline were associated with subsequent development of ANSD, and length of ICU stay
Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis
金沢大学疾患モデル総合研究センターBackground Pancreatic ductular adenocarcinoma (PDAC) is among the most dreadful of malignancies, in part due to the lack of efficacious chemotherapy. Immune checkpoint inhibitors, including anti-programmed cell death 1 (anti-PD-1) antibodies, are novel promising forms of systemic immunotherapy. In the current study, we assessed whether gemcitabine (GEM) combined with anti-PD-1 antibody treatment was efficacious as immunochemotherapy for advanced PDAC using a murine model of liver metastasis. Methods The murine model of PDAC liver metastasis was established by intrasplenically injecting the murine pancreatic cancer cell line PAN02 into immunocompetent C57BL/6J mice. The mice were treated with an anti-PD-1 antibody, GEM, or a combination of GEM plus anti-PD-1 antibody, and compared with no treatment (control); liver metastases, immune cell infiltration, gene expression, immune cell response phenotypes, and overall survival were investigated. Results In the metastatic tumor tissues of mice treated with GEM plus anti-PD-1 antibody, we observed the increased infiltration of Th1 lymphocytes and M1 macrophages. Gene expression profile analysis of peripheral blood cells obtained from mice treated with GEM plus anti-PD-1 antibody clearly highlighted T cell and innate immune signaling pathways. Survival of PDAC liver metastasis mice was significantly prolonged by the combination therapy (median survival, 66 days) when compared with that of GEM alone treatment (median survival, 56 days). Expanded lymphocytes, which were isolated from the splenocytes of PDAC liver metastasis mice treated with GEM plus anti-PD-1 antibody, had an increased number of M1 macrophages. Conclusion The combination of anti-PD-1 antibody immunotherapy with GEM was beneficial to treat a murine model of PDAC liver metastasis by enhancing the immune response mediated by Th1 lymphocytes and M1 macrophages and was associated with CD8+ T cells.
Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial
Background
Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population.
Methods
AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921.
Findings
Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months.
Interpretation
Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke
膵癌肝転移マウスモデルにおけるGemcitabineと抗PD-1抗体投与によるM1マクロファージとTh1応答を介する抗腫瘍効果の促進
第20回 高安賞最優秀論文賞受賞 Journal for immunoTherapy of cancer. 2020 Nov ; 8(2) : e001367. 2020年11月 掲
Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis
Background Pancreatic ductular adenocarcinoma (PDAC) is among the most dreadful of malignancies, in part due to the lack of efficacious chemotherapy. Immune checkpoint inhibitors, including anti-programmed cell death 1 (anti-PD-1) antibodies, are novel promising forms of systemic immunotherapy. In the current study, we assessed whether gemcitabine (GEM) combined with anti-PD-1 antibody treatment was efficacious as immunochemotherapy for advanced PDAC using a murine model of liver metastasis.Methods The murine model of PDAC liver metastasis was established by intrasplenically injecting the murine pancreatic cancer cell line PAN02 into immunocompetent C57BL/6J mice. The mice were treated with an anti-PD-1 antibody, GEM, or a combination of GEM plus anti-PD-1 antibody, and compared with no treatment (control); liver metastases, immune cell infiltration, gene expression, immune cell response phenotypes, and overall survival were investigated.Results In the metastatic tumor tissues of mice treated with GEM plus anti-PD-1 antibody, we observed the increased infiltration of Th1 lymphocytes and M1 macrophages. Gene expression profile analysis of peripheral blood cells obtained from mice treated with GEM plus anti-PD-1 antibody clearly highlighted T cell and innate immune signaling pathways. Survival of PDAC liver metastasis mice was significantly prolonged by the combination therapy (median survival, 66 days) when compared with that of GEM alone treatment (median survival, 56 days). Expanded lymphocytes, which were isolated from the splenocytes of PDAC liver metastasis mice treated with GEM plus anti-PD-1 antibody, had an increased number of M1 macrophages.Conclusion The combination of anti-PD-1 antibody immunotherapy with GEM was beneficial to treat a murine model of PDAC liver metastasis by enhancing the immune response mediated by Th1 lymphocytes and M1 macrophages and was associated with CD8+ T cells
Human versus equine intramuscular antitoxin, with or without human intrathecal antitoxin, for the treatment of adults with tetanus: a 2 × 2 factorial randomised controlled trial
Background
Intramuscular antitoxin is recommended in tetanus treatment, but there are few data comparing human and equine preparations. Tetanus toxin acts within the CNS, where there is limited penetration of peripherally administered antitoxin; thus, intrathecal antitoxin administration might improve clinical outcomes compared with intramuscular injection.
Methods
In a 2 × 2 factorial trial, all patients aged 16 years or older with a clinical diagnosis of generalised tetanus admitted to the intensive care unit of the Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam, were eligible for study entry. Participants were randomly assigned first to 3000 IU human or 21 000 U equine intramuscular antitoxin, then to either 500 IU intrathecal human antitoxin or sham procedure. Interventions were delivered by independent clinicians, with attending clinicians and study staff masked to treatment allocations. The primary outcome was requirement for mechanical ventilation. The analysis was done in the intention-to-treat population. The study is registered at ClinicalTrials.gov, NCT02999815; recruitment is completed.
Findings
272 adults were randomly assigned to interventions between Jan 8, 2017, and Sept 29, 2019, and followed up until May, 2020. In the intrathecal allocation, 136 individuals were randomly assigned to sham procedure and 136 to antitoxin; in the intramuscular allocation, 109 individuals were randomly assigned to equine antitoxin and 109 to human antitoxin. 54 patients received antitoxin at a previous hospital, excluding them from the intramuscular antitoxin groups. Mechanical ventilation was given to 56 (43%) of 130 patients allocated to intrathecal antitoxin and 65 (50%) of 131 allocated to sham procedure (relative risk [RR] 0·87, 95% CI 0·66–1·13; p=0·29). For the intramuscular allocation, 48 (45%) of 107 patients allocated to human antitoxin received mechanical ventilation compared with 48 (44%) of 108 patients allocated to equine antitoxin (RR 1·01, 95% CI 0·75–1·36, p=0·95). No clinically relevant difference in adverse events was reported. 22 (16%) of 136 individuals allocated to the intrathecal group and 22 (11%) of 136 allocated to the sham procedure experienced adverse events related or possibly related to the intervention. 16 (15%) of 108 individuals allocated to equine intramuscular antitoxin and 17 (16%) of 109 allocated to human antitoxin experienced adverse events related or possibly related to the intervention. There were no intervention-related deaths.
Interpretation
We found no advantage of intramuscular human antitoxin over intramuscular equine antitoxin in tetanus treatment. Intrathecal antitoxin administration was safe, but did not provide overall benefit in addition to intramuscular antitoxin administration