385 research outputs found

    Acute Complex Type A Dissection associated with peripheral malperfusion syndrome treated with a staged approach guided by lactate levels

    Get PDF
    Acute type A aortic dissection can be complicated by visceral malperfusion and is associated with a significant surgical morbidity and mortality. We describe a case of successful management of a complex acute type A dissection with mesenteric and lower limb ischemia treated with endovascular thoracic stenting and femoro-femoral crossover bypass grafting followed by aortic arch repair. To accomplish this, we applied a staged therapeutic approach using serial lactate measurements to assess the adequacy of peripheral perfusion and metabolic status prior to surgical repair of the proximal dissection

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Anaerobic digestion is the dominant pathway for pit latrine decomposition and is limited by intrinsic factors.

    Get PDF
    In vitro methods were used to assess the full potential for decomposition (measured as biogas formation) from pit latrine samples taken from the top layer of 15 Tanzanian latrines. We found considerable variability in the decomposition rate and extent. This was compared with decomposition in the same latrines, measured by comparing top layer composition with fresh stools and deeper (older) layers, to assess whether this potential was realised in situ. Results showed a close match between the extent of organic material breakdown in situ and in vitro, indicating that anaerobic digestion is the dominant pathway in latrines. The average potential decrease in chemical oxygen demand (COD) (determined as methane production in vitro within 60 days) and actual measured decrease in situ are 68.9% ± 11.3 and 69.7% ± 19.4, respectively. However in the in vitro tests, where samples were diluted in water, full decomposition was achieved in 2 months, whereas in situ it can take years; this suggests that water addition may offer a simple route to improving latrine performance. The results also allowed us to estimate, for the first time to our knowledge using experimental data, the contribution that latrines make to greenhouse gas emissions globally. This amounts to ∼2% of annual US emissions

    Near-complete backbone resonance assignments of acid-denatured human cytochrome c in dimethylsulfoxide: a prelude to studying interactions with phospholipids

    Get PDF
    Human cytochrome c plays a central role in the mitochondrial electron transfer chain and in the intrinsic apoptosis pathway. Through the interaction with the phospholipid cardiolipin, cytochrome c triggers release of pro-apoptotic factors, including itself, from the mitochondrion into the cytosol of cells undergoing apoptosis. The cytochrome c/cardiolipin complex has been extensively studied through various spectroscopies, most recently with high-field solution and solid-state NMR spectroscopies, but there is no agreement between the various studies on key structural features of cytochrome c in its complex with cardiolipin. In the present study, we report backbone 1H, 13C, 15N resonance assignments of acid-denatured human cytochrome c in the aprotic solvent dimethylsulfoxide. These have led to the assignment of a reference 2D 1H-15N HSQC spectrum in which out of the 99 non-proline residues 87% of the backbone amides are assigned. These assignments are being used in an interrupted H/D exchange strategy to map the binding site of cardiolipin on human cytochrome c

    Vitamin D and oestrogen receptor polymorphisms in developmental dysplasia of the hip and primary protrusio acetabuli – A preliminary study

    Get PDF
    We investigated the association of developmental dysplasia of the hip (DDH) and primary protrusion acetabuli (PPA) with Vitamin D receptor polymorphisms Taq I and Fok I and oestrogen receptor polymorphisms Pvu II and Xba I. 45 patients with DDH and 20 patients with PPA were included in the study. Healthy controls (n = 101) aged 18–60 years were recruited from the same geographical area. The control subjects had a normal acetabular morphology based on a recent pelvic radiograph performed for an unrelated cause. DNA was obtained from all the subjects from peripheral blood. Genotype frequencies were compared in the three groups. The relationship between the genotype and morphology of the hip joint, severity of the disease, age at onset of disease and gender were examined. The oestrogen receptor Xba I wild-type genotype (XX, compared with Xx and xx combined) was more common in the DDH group (55.8%) than controls (37.9%), though this just failed to achieve statistical significance (p = 0.053, odds ratio = 2.1, 95% CI = 0.9–4.6). In the DDH group, homozygosity for the mutant Taq I Vitamin D receptor t allele was associated with higher acetabular index (Mann-Whitney U-test, p = 0.03). Pvu II pp oestrogen receptor genotype was associated with low centre edge angle (p = 0.07). This study suggests a possible correlation between gene polymorphism in the oestrogen and vitamin D receptors and susceptibility to, and severity of DDH. The Taq I vitamin D receptor polymorphisms may be associated with abnormal acetabular morphology leading to DDH while the Xba I oestrogen receptor XX genotype may be associated with increased risk of developing DDH. No such correlations were found in the group with PPA

    Mechanically assisted electrochemical degradation of alumina-TiC composites

    Get PDF
    Alumina-TiC composite material is a tough ceramic composite with excellent hardness, wear resistance and oxidation resistance in dry and high-temperature conditions. In aqueous conditions, however, it is likely to be electrochemically active facilitating charge transfer processes due to the conductive nature of TiC. For application as an orthopedic biomaterial, it is crucial to assess the electrochemical behavior of this composite, especially under a combined mechanical and electrochemical environment. In this study, we examined the mechanically assisted electrochemical performance of alumina-TiC composite in an aqueous environment. The spontaneous electrochemical response to brushing abrasion was measured. Changes in the magnitude of electrochemical current with abrasion test conditions and possible causal relationship to the alteration in surface morphology were examined. Results showed that the alumina matrix underwent abrasive wear with evidence of microploughing and grain boundary damage. Chemical analysis revealed TiO2 formation in the abraded region, indicating oxidation of the conductive TiC domain. Furthermore, wear debris from alumina abrasion appeared to affect reaction kinetics at the composite-electrolyte interface. From this work, we established that the composite undergoes abrasion assisted electrochemical degradation even in gentle abrasive conditions and the severity of degradation is related to temperature and conditions of test environment

    The development of descending projections from the brainstem to the spinal cord in the fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the fetal sheep is a favoured model for studying the ontogeny of physiological control systems, there are no descriptions of the timing of arrival of the projections of supraspinal origin that regulate somatic and visceral function. In the early development of birds and mammals, spontaneous motor activity is generated within spinal circuits, but as development proceeds, a distinct change occurs in spontaneous motor patterns that is dependent on the presence of intact, descending inputs to the spinal cord. In the fetal sheep, this change occurs at approximately 65 days gestation (G65), so we therefore hypothesised that spinally-projecting axons from the neurons responsible for transforming fetal behaviour must arrive at the spinal cord level shortly before G65. Accordingly we aimed to identify the brainstem neurons that send projections to the spinal cord in the mature sheep fetus at G140 (term = G147) with retrograde tracing, and thus to establish whether any projections from the brainstem were absent from the spinal cord at G55, an age prior to the marked change in fetal motor activity has occurred.</p> <p>Results</p> <p>At G140, CTB labelled cells were found within and around nuclei in the reticular formation of the medulla and pons, within the vestibular nucleus, raphe complex, red nucleus, and the nucleus of the solitary tract. This pattern of labelling is similar to that previously reported in other species. The distribution of CTB labelled neurons in the G55 fetus was similar to that of the G140 fetus.</p> <p>Conclusion</p> <p>The brainstem nuclei that contain neurons which project axons to the spinal cord in the fetal sheep are the same as in other mammalian species. All projections present in the mature fetus at G140 have already arrived at the spinal cord by approximately one third of the way through gestation. The demonstration that the neurons responsible for transforming fetal behaviour in early ontogeny have already reached the spinal cord by G55, an age well before the change in motor behaviour occurs, suggests that the projections do not become fully functional until well after their arrival at the spinal cord.</p
    • …
    corecore