37 research outputs found

    Competitive segmentation of the hippocampus and the amygdala from MRI scans

    Get PDF
    The hippocampus and the amygdala are two brain structures which play a central role in several fundamental cognitive processes. Their segmentation from Magnetic Resonance Imaging (MRI) scans is a unique way to measure their atrophy in some neurological diseases, but it is made difficult by their complex geometry. Their simultaneous segmentation is considered here through a competitive homotopic region growing method. It is driven by relational anatomical knowledge, which enables to consider the segmentation of atrophic structures in a straightforward way. For both structures, this fast algorithm gives results which are comparable to manual segmentation with a better reproducibility. Its performances regarding segmentation quality, automation and computation time, are amongst the best published data.L’hippocampe et l’amygdale sont deux structures cérébrales intervenant dans plusieurs fonctions cognitives fondamentales. Leur segmentation, à partir de volumes d’imagerie par résonance magnétique (IRM), est un outil essentiel pour mesurer leur atteinte dans certaines pathologies neurologiques, mais elle est rendue difficile par leur géométrie complexe. Nous considérons leur segmentation simultanée par une méthode de déformation homotopique compétitive de régions. Celle-ci est guidée par des connaissances anatomiques relationnelles ; ceci permet de considérer directement des structures atrophiées. Rapide, l’algorithme donne, pour les deux structures, des résultats comparables à la segmentation manuelle avec une meilleure reproductibilité. Ses performances, concernant la qualité de la segmentation, le degré d’automatisation et le temps de calcul, sont parmi les meilleures de la littérature

    Loss of memory for auditory-spatial associations following unilateral medial temporal-lobe damage

    Get PDF
    The goal of the present experiment was to determine the role of medial temporal-lobe structures in episodic memory of auditory-spatial associations. By using a two-alternative forced choice paradigm in which an association between eight different sounds and their spatial location must be recognized, learning abilities over 10 learning sessions were tested in 19 patients who had undergone a right or a left medial temporal-lobe resection for the relief of intractable seizures as well as in nine normal control participants. The data demonstrated that significant learning took place over the successive sessions for all the participants. In addition, the results showed that patients with left but not right medial temporal-lobe lesion were impaired in this learning task as compared to normal participants, suggesting the predominant implication of left medial temporal-lobe structures in auditory-spatial associative learning. The predominant role of left hemisphere structures in this memory task could be explained by a spatial categorical coding, which was enhanced by the use of eight loud-speakers. This result also suggests that the ability to store an episodic event associated with a rich spatial (or temporal) context depends on the left medial temporal-lobe structures. Thus, this finding provides an interesting parallel with data obtained in the visual modality by documenting for the first time the role of the left medial temporal-lobe in episodic learning of auditory-spatial associations

    Segmentation compétitive de l'hippocampe et de l'amygdale à partir de volumes IRM

    Get PDF
    L'hippocampe et l'amygdale sont deux structures cérébrales intervenant dans plusieurs fonctions cognitives fondamentales. Leur segmentation est un outil essentiel pour mesurer leur atteinte dans certaines pathologies neurologiques, mais elle est rendue difficile par leur complexité. Nous considérons leur segmentation simultanée par une méthode de déformation homotopique compétitive de régions. celle-ci est guidée par des connaissances anatomiques relationnelles, et non des a priori statistiques, pour pouvoir considérer des structures atrophiées. Rapide, l'algorithme donne des résultats satisfaisants pour les deux structures par rapport à la segmentation manuelle et à la littérature

    Spatial and non-spatial auditory short-term memory in patients with temporal-lobe lesion

    Get PDF
    Primate auditory systems are divided into at least two different pathways. One refers to objects and the other deals with localization. To investigate auditory spatial and non-spatial short-term memory, we tested patients with unilateral medial temporal lobe lesions including the pole in two tasks involving either sound localization discrimination or auditory object discrimination. The results showed that both left and right temporal lobe lesions impaired spatial short-term memory whereas only lesions on the right affected non-spatial short-term memory. By contrast, the same patients were able to perform the tasks when short interstimulus intervals were used suggesting that short-term memory deficits can not be ascribed to difficulties in perception. These findings document, for the first time, in a neurological population, the functional dissociation between spatial and non-spatial auditory short-term memory that seem to depend on separate neural circuits within the medial temporal lobe

    Human Gamma Oscillations during Slow Wave Sleep

    Get PDF
    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks

    Neuropsychological patterns following lesions of the anterior insula in a series of forty neurosurgical patients

    Get PDF
    In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients\u2019 neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients\u2019 cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination

    Robust imaging of hippocampal inner structure at 7T: in vivo acquisition protocol and methodological choices

    Get PDF
    International audienceOBJECTIVE:Motion-robust multi-slab imaging of hippocampal inner structure in vivo at 7T.MATERIALS AND METHODS:Motion is a crucial issue for ultra-high resolution imaging, such as can be achieved with 7T MRI. An acquisition protocol was designed for imaging hippocampal inner structure at 7T. It relies on a compromise between anatomical details visibility and robustness to motion. In order to reduce acquisition time and motion artifacts, the full slab covering the hippocampus was split into separate slabs with lower acquisition time. A robust registration approach was implemented to combine the acquired slabs within a final 3D-consistent high-resolution slab covering the whole hippocampus. Evaluation was performed on 50 subjects overall, made of three groups of subjects acquired using three acquisition settings; it focused on three issues: visibility of hippocampal inner structure, robustness to motion artifacts and registration procedure performance.RESULTS:Overall, T2-weighted acquisitions with interleaved slabs proved robust. Multi-slab registration yielded high quality datasets in 96 % of the subjects, thus compatible with further analyses of hippocampal inner structure.CONCLUSION:Multi-slab acquisition and registration setting is efficient for reducing acquisition time and consequently motion artifacts for ultra-high resolution imaging of the inner structure of the hippocampus

    Functional anatomy of the insula: new insights from imaging

    No full text
    corecore