5 research outputs found

    Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and γ-ray/neutron shielding properties of Portland cement pastes

    No full text
    This study presents a comparison of the effects of micro-Bi2O3 and nano-Bi2O3 powders on the mechanical, microstructural and gamma / neutron shielding properties of Portland cement pastes. Cement pastes with various ratios of cement (up to 30 wt-%) replaced with Bi2O3 micro and nanoparticles were prepared. Consistency, compressive strength, water accessible porosity and mercury intrusion porosimetry tests were performed, in order to characterize their engineering properties. In addition, experimental and theoretical evaluations of γ-ray and neutron shielding properties were performed. The results showed that the incorporation of Bi2O3 powders gradually leads to a decline in cement pastes’ compressive strength and an increase in their porosity, as the amount of powder is increased. However, the deterioration rate varies depending of type of powder used, in favor of nano-Bi2O3. Gamma attenuation tests results indicate that the addition of Bi2O3 powders enhances the shielding capability of pastes, in the energy range of interest (0.08–2.614 MeV). However, the effects of particle size on γ-ray attenuation are negligible in that energy range. Slow neutron attenuation study showed that the addition of nano-Bi2O3 improved the shielding ability of cement pastes, with enhancements ranging between 15.3% and 25.5% for samples with 5 and 30 wt-% nano-Bi2O3, respectively. In conclusion, this study shows that the addition of nano or micro-Bi2O3 is effective in producing lead-free cementitious composites with improved γ-ray and neutron shielding properties. Unlike gamma shielding, nano-sized Bi2O3 has a better ability to attenuate neutrons, in comparison to their micro-sized counterparts.EC/H2020/841592/EU/Ultra-Lightweight Concrete for 3D printing technologies/Ultra-LightCon-3

    Development of 3D printed heavyweight concrete (3DPHWC) containing magnetite aggregate

    No full text
    The main objective of this study is to develop 3D printed heavyweight concrete (3DPHWC) to produce elements with a dry density of up to 3500 kg/m3 by replacing natural aggregate (SA) with magnetite aggregate (MA) up to 100%. A comprehensive systematic study was conducted to thoroughly assess mixtures' mechanical properties, physical proficiency, fresh properties, and printing qualities. The inclusion of MA exhibited the desired fresh properties required for 3D printing and promising physical and mechanical properties. Evaluation of the mechanical properties of designed 3DPHWC indicates that replacing SA with MA increases both cast and printed samples' strengths. The 3D printed M100 sample achieved higher 28 days flexural and compressive strengths by 18 % and 20 %, respectively, compared to printed control mix (M0). Micro-CT study correspondingly demonstrated improvements in the composites' porosity, pore size, and pore morphologies. The linear attenuation coefficients (LACs) and half-value layer (HVLs) for slow neutron and gamma-ray were measured to assess radiation shielding characteristics. A significant performance improvement was obtained for slow neutrons by introducing the magnetite aggregate. Unlike slow neutrons, no significant difference was observed between cast and printed samples against γ-rays. Moreover, the effect of porosity on the shielding performance was discussed
    corecore