1,042 research outputs found

    The Tidal Tails of 47 Tucanae

    Full text link
    The Galactic globular cluster 47 Tucanae (47 Tuc) shows a rare increase in its velocity dispersion profile at large radii, indicative of energetic, yet bound, stars at large radii dominating the velocity dispersion and, potentially, of ongoing evaporation. Escaping stars will form tidal tails, as seen with several Galactic globular clusters, however, the tidal tails of 47 Tuc are yet to be uncovered. We model these tails of 47 Tuc using the most accurate input data available, with the specific aim of determining their locations, as well as the densities of the epicyclic overdensities within the tails. The overdensities from our models show an increase of 3-4% above the Galactic background and, therefore, should be easily detectable using matched filtering techniques. We find that the most influential parameter with regard to both the locations and densities of the epicyclic overdensities is the Heliocentric distance to the cluster. Hence, uncovering these tidal features observationally will contribute greatly to the ongoing problem of determining the distance to 47 Tuc, tightly constraining the distance of the cluster independent of other methods. Using our streakline method for determining the locations of the tidal tails and their overdensities, we show how, in principle, the shape and extent of the tidal tails of any Galactic globular cluster can be determined without resorting to computationally expensive N-body simulations.Comment: Original paper has 10 pages, 10 figures and 2 tables. Please note that this now includes an erratum. Erratum has 6 pages, 8 figures and 2 tables. Ignore the exclamation marks in Section 2 of the erratum, these are an artifact of the LaTeX class file used to produce the manuscrip

    Is the distant globular cluster Pal 14 in a deep-freeze?

    Full text link
    We investigate the velocity dispersion of Pal 14, an outer Milky-Way globular cluster at Galactocentric distance of 71 kpc with a very low stellar density (central density 0.1-0.2 Msun/pc^3). Due to this low stellar density the binary population of Pal 14 is likely to be close to the primordial binary population. Artificial clusters are generated with the observed properties of Pal 14 and the velocity dispersion within these clusters is measured as Jordi et al. (2009) have done with 17 observed stars of Pal 14. We discuss the effect of the binary population on these measurements and find that the small velocity dispersion of 0.38 km/s which has been found by Jordi et al. (2009) would imply a binary fraction of less than 0.1, even though from the stellar density of Pal 14 we would expect a binary fraction of more than 0.5. We also discuss the effect of mass segregation on the velocity dispersion as possible explanation for this discrepancy, but find that it would increase the velocity dispersion further. Thus, either Pal 14 has a very unusual stellar population and its birth process was significantly different than we see in today's star forming regions, or the binary population is regular and we would have to correct the observed 0.38 km/s for binarity. In this case the true velocity dispersion of Pal 14 would be much smaller than this value and the cluster would have to be considered as "kinematically frigid", thereby possibly posing a challenge for Newtonian dynamics but in the opposite sense to MOND.Comment: 8 pages, 4 figures, accepted for publication in Ap

    On path-based coalgebras and weak notions of bisimulation

    Get PDF
    It is well known that the theory of coalgebras provides an abstract definition of behavioural equivalence that coincides with strong bisimulation across a wide variety of state-based systems. Unfortunately, the theory in the presence of so-called silent actions is not yet fully developed. In this paper, we give a coalgebraic characterisation of branching (delay) bisimulation in the context of labelled transition systems (fully probabilistic systems). It is shown that recording executions (up to a notion of stuttering), rather than the set of successor states, from a state is sufficient to characterise the respected bisimulation relations in both cases

    Controlling-Konzept für die Logistik

    Full text link

    Peculiarities in Velocity Dispersion and Surface Density Profiles of Star Clusters

    Full text link
    Based on our recent work on tidal tails of star clusters (Kuepper et al. 2009) we investigate star clusters of a few 10^4 Msun by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of NN-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50% of the Jacobi radius. Beyond 70% of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from Newtonian gravity. By fitting templates to the about 10^4 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King (1962) works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with 3 more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10%, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. (abridged)Comment: 23 pages, 13 figures, accepted for publication in MNRA

    Making the best of mixed-field orientation of polar molecules: A recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses

    Get PDF
    We have experimentally and theoretically investigated the mixed-field orientation of rotational-state-selected OCS molecules and we achieve strong degrees of alignment and orientation. The applied moderately intense nanosecond laser pulses are long enough to adiabatically align molecules. However, in combination with a weak dc electric field, the same laser pulses result in nonadiabatic dynamics in the mixed-field orientation. These observations are fully explained by calculations employing, both, adiabatic and non-adiabatic time-dependent models.Comment: 5 pages, 4 figure

    Laser-induced 3D alignment and orientation of quantum-state-selected molecules

    Get PDF
    A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are selected and used as targets for 3-dimensional alignment and orientation. The alignment is induced in the adiabatic regime with an elliptically polarized, intense laser pulse and the orientation is induced by the combined action of the laser pulse and a weak static electric field. We show that the degree of 3-dimensional alignment and orientation is strongly enhanced when rotationally state-selected molecules, rather than molecules in the original molecular beam, are used as targets.Comment: 8 pages, 7 figures; v2: minor update

    Free Radicals in Superfluid Liquid Helium Nanodroplets: A Pyrolysis Source for the Production of Propargyl Radical

    Full text link
    An effusive pyrolysis source is described for generating a continuous beam of radicals under conditions appropriate for the helium droplet pick-up method. Rotationally resolved spectra are reported for the ν1\nu_1 vibrational mode of the propargyl radical in helium droplets at 3322.15 cm−1^{-1}. Stark spectra are also recorded that allow for the first experimental determination of the permanent electric dipole moment of propargyl, namely -0.150 D and -0.148 D for ground and excited state, respectively, in good agreement with previously reported ab initio results of -0.14 D [1]. The infrared spectrum of the ν1\nu_1 mode of propargyl-bromide is also reported. The future application of these methods for the production of novel radical clusters is discussed
    • …
    corecore