8,659 research outputs found
Ultrafast Quenching of the Exchange Interaction in a Mott Insulator
We investigate how fast and how effective photocarrier excitation can modify
the exchange interaction in the prototype Mott-Hubbard
insulator. We demonstrate an ultrafast quenching of both by
evaluating exchange integrals from a time-dependent response formalism and by
explicitly simulating laser-induced spin precession in an antiferromagnet that
is canted by an external magnetic field. In both cases, the electron dynamics
is obtained from nonequilibrium dynamical mean-field theory. We find that the
modified emerges already within a few electron hopping times
after the pulse, with a reduction that is comparable to the effect of chemical
doping.Comment: 8 pages, 4 figure
Ultrafast and reversible control of the exchange interaction in Mott insulators
The strongest interaction between microscopic spins in magnetic materials is
the exchange interaction . Therefore, ultrafast control of
holds the promise to control spins on ultimately fast timescales.
We demonstrate that time-periodic modulation of the electronic structure by
electric fields can be used to reversibly control on ultrafast
timescales in extended antiferromagnetic Mott insulators. In the regime of weak
driving strength, we find that can be enhanced and reduced for
frequencies below and above the Mott gap, respectively. Moreover, for strong
driving strength, even the sign of can be reversed and we show
that this causes time reversal of the associated quantum spin dynamics. These
results suggest wide applications, not only to control magnetism in condensed
matter systems, for example, via the excitation of spin resonances, but also to
assess fundamental questions concerning the reversibility of the quantum
many-body dynamics in cold atom systems.Comment: 9 pages, 4 figure
Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces
Using polarized X-rays, we compare the electronic and magnetic properties of
a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified
LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant
magnetic scattering (XRMS), we can probe the interfaces of complicated layered
structures and quantitatively model depth-dependent magnetic profiles as a
function of distance from the interface. Comparisons of the average electronic
and magnetic properties at the interface are made independently using X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The
XAS and the XMCD demonstrate that the electronic and magnetic structure of the
LMO layer at the modified interface is qualitatively equivalent to the
underlying LSMO film. From the temperature dependence of the XMCD, it is found
that the near surface magnetization for both interfaces falls off faster than
the bulk. For all temperatures in the range of 50K - 300K, the magnetic
profiles for both systems always show a ferromagnetic component at the
interface with a significantly suppressed magnetization that evolves to the
bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface
shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however
the difference is only substantial at low temperature.Comment: 4 pages, 4 figure
Numerical residual perturbation solutions applied to the problem of a close satellite of the smaller body in the restricted three-body problem
Numerical residual perturbation solution for prediction of satellite position in restricted three-body proble
Optical control of competing exchange interactions and coherent spin-charge coupling in two-orbital Mott insulators
In order to have a better understanding of ultrafast electrical control of
exchange interactions in multi-orbital systems, we study a two-orbital Hubbard
model at half filling under the action of a time-periodic electric field. Using
suitable projection operators and a generalized time-dependent canonical
transformation, we derive an effective Hamiltonian which describes two
different regimes. First, for a wide range of non-resonant frequencies, we find
a change of the bilinear Heisenberg exchange that is
analogous to the single-orbital case. Moreover we demonstrate that also the
additional biquadratic exchange interaction can be enhanced,
reduced and even change sign depending on the electric field. Second, for
special driving frequencies, we demonstrate a novel spin-charge coupling
phenomenon enabling coherent transfer between spin and charge degrees of
freedom of doubly ionized states. These results are confirmed by an exact
time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.Comment: 3 pages, 6 figure
Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites
What happens to ferromagnetism at the surfaces and interfaces of manganites?
With the competition between charge, spin, and orbital degrees of freedom, it
is not surprising that the surface behavior may be profoundly different than
that of the bulk. Using a powerful combination of two surface probes, tunneling
and polarized x-ray interactions, this paper reviews our work on the nature of
the electronic and magnetic states at manganite surfaces and interfaces. The
general observation is that ferromagnetism is not the lowest energy state at
the surface or interface, which results in a suppression or even loss of
ferromagnetic order at the surface. Two cases will be discussed ranging from
the surface of the quasi-2D bilayer manganite
(LaSrMnO) to the 3D Perovskite
(LaSrMnO)/SrTiO interface. For the bilayer manganite,
that is, ferromagnetic and conducting in the bulk, these probes present clear
evidence for an intrinsic insulating non-ferromagnetic surface layer atop
adjacent subsurface layers that display the full bulk magnetization. This
abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer
coupling native to these quasi-two-dimensional materials. This is in marked
contrast to the non-layered manganite system
(LaSrMnO/SrTiO), whose magnetization near the interface
is less than half the bulk value at low temperatures and decreases with
increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure
Nonequilibrium dynamical mean-field calculations based on the non-crossing approximation and its generalizations
We solve the impurity problem which arises within nonequilibrium dynamical
mean-field theory for the Hubbard model by means of a self-consistent
perturbation expansion around the atomic limit. While the lowest order, known
as the non-crossing approximation (NCA), is reliable only when the interaction
U is much larger than the bandwidth, low-order corrections to the NCA turn out
to be sufficient to reproduce numerically exact Monte Carlo results in a wide
parameter range that covers the insulating phase and the metal-insulator
crossover regime at not too low temperatures. As an application of the
perturbative strong-coupling impurity solver we investigate the response of the
double occupancy in the Mott insulating phase of the Hubbard model to a
dynamical change of the interaction or the hopping, a technique which has been
used as a probe of the Mott insulating state in ultracold fermionic gases.Comment: 14 pages, 9 figure
Präzision MRT-basierter Gelenkflächen- und Knorpeldickenanalysen im Kniegelenk bei Verwendung einer schnellen Wasseranregungs-Sequenz und eines semiautomatischen Segmentierungs-Algorithmus
The aim of this study was to analyse the precision of three-dimensional joint surface and cartilage thickness measurements in the knee, using a fast, high-resolution water-excitation sequence and a semiautomated segmentation algorithm. The knee joint of 8 healthy volunteers, aged 22 to 29 years, were examined at a resolution of 1.5 mm x 0.31 mm x 0.31 mm, with four sagittal data sets being acquired after repositioning the joint. After semiautomated segmentation with a B-spline Snake algorithm and 3D reconstruction of the patellar, femoral and tibial cartilages, the joint surface areas (triangulation), cartilage volume, and mean and maximum thickness (Euclidean distance transformation) were analysed, independently of the orientation of the sections. The precision (CV%) for the surface areas was 2.1 to 6.6%. The mean cartilage thickness and cartilage volume showed coefficients of 1.9 to 3.5% (except for the femoral condyles), the value for the medial femoral condyle being 9.1%, and for the lateral condyle 6.5%. For maximum thickness, coefficients of between 2.6 and 5.9% were found. In the present study we investigate for the first time the precision of MRI-based joint surface area measurements in the knee, and of cartilage thickness analyses in the femur. Using a selective water-excitation sequence, the acquisition time can be reduced by more than 50%. The poorer precision in the femoral condyles can be attributed to partial Volume effects that occur at the edges of the joint surfaces with a sagittal image protocol. Since MRI is non-invasive, it is highly suitable for examination of healthy subjects (generation of individual finite element models, analysis of functional adaptation to mechanical stimulation, measurement of cartilage deformation in vivo) and as a diagnostic tool for follow-up, indication for therapy, and objective evaluation of new therapeutic agents in osteoarthritis
On smoothness of Black Saturns
We prove smoothness of the domain of outer communications (d.o.c.) of the
Black Saturn solutions of Elvang and Figueras. We show that the metric on the
d.o.c. extends smoothly across two disjoint event horizons with topology R x
S^3 and R x S^1 x S^2. We establish stable causality of the d.o.c. when the
Komar angular momentum of the spherical component of the horizon vanishes, and
present numerical evidence for stable causality in general.Comment: 47 pages, 5 figure
Foveal analysis and peripheral selection during active visual sampling
Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently
- …