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1 Introduction

In [4], Elvang and Figueras introduced a family of vacuum five-dimensional asymptotically
flat metrics, to be found in appendix A.1, and presented evidence that these metrics de-
scribe two-component black holes, with Killing horizon topology R×

(
(S1×S2)∪S3)

)
. In

this paper we construct extensions of the metrics across Killing horizons, with the Killing
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horizon becoming an event horizon in the extended space-time. Now, it is by no means
clear that those metrics have no singularities within their domains of outer communi-
cations (d.o.c.), and the main purpose of this work is to establish this for non-extreme
configurations. Again, it is by no means clear that the d.o.c.’s of the solutions are well
behaved causally. We prove that those d.o.c.’s are stably causal when the parameter c2
vanishes (this condition is equivalent to the vanishing of the Komar angular momentum
of the spherical component of the horizon, compare [4, eq. (3.39)]), and present numerical
evidence suggesting that this is true in general.

Given the analytical and numerical evidence presented here, it appears that the Black
Saturn metrics describe indeed well behaved black hole space-times within the whole range
of parameters given by Elvang and Figueras, except possibly for the degenerate cases when
some parameters ai coalesce, a study of which is left for future work. In particular we have
rigorously established that the Black Saturn metrics with c2 = 0 and with distinct ai’s have
a reasonably well behaved neighbourhood of the d.o.c. Our reticence here is related to the
fact that we have not proved global hyperbolicity of the d.o.c., which is often viewed as a
desirable property of the domains of outer communications of well behaved black holes. In
view of our experience with the Emperan-Reall metrics [2], the proof of global hyperbolicity
(likely to be true) appears to be a difficult task.

We use the notation of [4], and throughout this paper we assume that the parameters
ai occurring in the metric are pairwise distinct, ai 6= aj for i 6= j.

2 Regularity at z = a1, ρ = 0, and the choice of c1

We consider the metric coefficient gtt on the set {ρ = 0, z < a1}. A Mathematica

calculation shows that gtt is a rational function with denominator given by

− (2(a3 − a1)(a2 − a4) + (a5 − a1)c1c2)2 (z − a1)(z − a2)(z − a4) , (2.1)

which clearly vanishes as z approaches a1 from below (we will see in section 4 that the
first multiplicative factor is non-zero with our choices of constants). On the other hand,
its numerator has the following limit as z → a1,

(a2 − a1)2(a3 − a1)(a5 − a1)
(
2(a3 − a1)(a4 − a1)− (a5 − a1)c21

)
c22 , (2.2)

which is non-zero unless c2 vanishes or c1 is chosen to make the before-last factor vanish:

c1 = ±

√
2(a3 − a1)(a4 − a1)

a5 − a1
6= 0 . (2.3)

This coincides with eq. (3.7) of [4].
By inspection, one finds that the metric is invariant under the transformation

(c1, c2, ψ) 7→ (−c1,−c2,−ψ) .

Thus, an overall change of sign (c1, c2) 7→ (−c1,−c2) can be implemented by a change of
orientation of the angle ψ. Hence, to understand the global structure of the associated
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space-time, it suffices to consider the case

c1 > 0 ;

this will be assumed throughout the paper from now on.
If (2.3) does not hold, the Lorentzian norm squared gtt = g(∂t, ∂t) of the Killing vector

∂t is unbounded as one approaches a1; a well known argument shows that this leads to a
geometric singularity.

We show in section 5.8.1 that the choice (2.3) is necessary for regularity of the metric
regardless of whether or not c2 = 0: without this choice, gψψ would be unbounded near a1,
leading to a geometric singularity as before.

With the choice (2.3) of c1, or with c2 = 0, the point α1 := (ρ = 0, z = a1) in the
quotient of the space-time by the action of the isometry group becomes a ghost point, in the
sense that it has no natural geometric interpretation, such as a fixed point of the action,
or the end-point of an event horizon. Now, the functions

Ri :=
√
ρ2 + (z − ai)2

are not differentiable at ρ = 0, z = ai. So, a generic function of R1 will have some
derivatives blowing up at ρ = 0, z = a1. However, this will not happen for functions which
are smooth functions of R2

1. It came as a major surprise to us that the choice of c1 above,
determined by requiring boundedness of gtt on the axis near a1, also leads to smoothness
of all metric functions near z = a1. It turns out that there is a general mechanism which
guarantees that; this will be discussed elsewhere [3].

To establish that the metric is indeed smooth near the ghost point α1, we start with

gtt = −Hy

Hx
= −FHy

FHx
=: Φ(µ1, µA, c1, c2, ρ

2) ,

where A runs from two to five. Φ is a rational function of its arguments, and hence a
rational function of R1. So gtt will be a smooth function of R2

1 near R1 = 0 if and only if
Φ is even in R1:

Φ(R1 − (z − a1), µA, c1, c2, ρ2) = Φ(−R1 − (z − a1), µA, c1, c2, ρ2) , (2.4)

assuming moreover that the right value of c1 has been inserted. (We emphasise that neither
FHx or FHy are even in R2

1, so there is a non-trivial factorisation involved;1 moreover gtt
is not even in R1 for arbitrary values of the ci’s, as is seen by setting c1 = c2 = 0.) Now,
there is little hope of checking this identity by hand after all functions have been expressed
in terms of ρ, z, and the ai’s, and we have not been able to coerce Mathematica to deliver
the required result in this way either. Instead, to avoid introducing new functions or
parameters into Φ, we first note that

−R1 − (z − a1) = −ρ
2

µ1
,

1We are grateful to H. Elvang and P. Figueras for drawing our attention to the fact that this factorisation

takes place in the Emparan-Reall limit of the Black Saturn metric.

– 3 –



J
H
E
P
1
1
(
2
0
1
0
)
0
4
8

and so (2.4) reads

Φ(µ1, µA, c1, c2, ρ
2) = Φ

(
−ρ

2

µ1
, µA, c1, c2, ρ

2

)
.

From the explicit form of the functions FHx and FHy we can write

Φ(µ1, µA, c1, c2)− Φ
(
−ρ

2

µ1
, µA, c1, c2

)
=
∑4

i=0 Φi(c1c2)i

G
,

where the Φi’s are polynomials in c21, µi and ρ2, and G is a polynomial in µi, c1, c2 and ρ2.
One then checks with Mathematica that each of the coefficients Φi has a multiplicative
factor that vanishes after applying the identity (5.1) below to replace each occurrence of
c21 in terms of the µi’s:

c21 =
(−µ1 + µ3)(−µ1 + µ4)µ5(µ1µ3 + ρ2)(µ1µ4 + ρ2)

µ1µ3µ4(−µ1 + µ5)(µ1µ5 + ρ2)
.

It is rather fortunate that each of those coefficients has a vanishing factor, as we have
not been able to convince Mathematica to carry out a brute-force calculation on all
coefficients at once.

An identical analysis applies to gρρ = gzz and ωψ/Hy; regularity of gψψ immediately
follows; there is nothing to do for gϕϕ. Before doing these calculations, care has to be
taken to eliminate, with the right signs, all square roots of squares that appear in the
definition of ωψ.

3 Asymptotics at infinity: the choice of q and k

We wish to check that the Black Saturn metric is asymptotically flat. As a guiding principle,
the Minkowski metric on R5 is written in coordinates adapted to U(1)×U(1) symmetry as

η = −dt2 + dx̃2 + dỹ2 + dx̂2 + dŷ2

= −dt2 + dρ̃2 + ρ̃2dψ2 + dρ̂2 + ρ̂2dϕ2 , (3.1)

with
(x̃, ỹ) = ρ̃(cosψ, sinψ) , (x̂, ŷ) = ρ̂(cosϕ, sinϕ) .

Introducing ρ and θ as polar coordinates in the (ρ̂, ρ̃) plane,

(ρ̂, ρ̃) = r(cos θ, sin θ) ,

the metric (3.1) becomes

η = −dt2 + dr2 + r2dθ2 + r2 sin2 θ dψ2 + r2 cos2 θ dϕ2 . (3.2)

Note that θ ∈ [0, π/2] since both ρ̃ and ρ̂ are positive in our range of interest.
As outlined by Elvang and Figueras in [4], relating the (ρ, z, ψ, ϕ) coordinates of the

Black Saturn metric to the (r, θ, ψ, ϕ) coordinates of (3.2) via the formulae

ρ =
1
2
r2 sin 2θ , z =

1
2
r2 cos 2θ , θ ∈

[
0,
π

2

]
, (3.3)
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should lead to a metric which is asymptotically flat. Under (3.3) the metric (3.2) becomes

η = −dt2 + r−2(dρ2 + dz2) + r2 sin2 θ dψ2 + r2 cos2 θ dϕ2 , (3.4)

so that in such coordinates a set of necessary conditions for asymptotic flatness reads

gtt → −1 , r−1 sin−1 θ gtψ → 0 , (3.5)

r2gρρ = r2gzz → 1 , r−2 sin−2 θ gψψ → 1 , r−2 cos−2 θ gϕϕ → 1 , (3.6)

when r tends to infinity. One also needs to check that all metric components are suitably
behaved when transformed to the coordinates (x̃, ỹ, x̂, ŷ) above. Finally, each derivative of
any metric components should decay one order faster than the preceding one.

We start by noting that

z =
1
2
r2(cos2 θ − sin2 θ) =

1
2

(ρ̂2 − ρ̃2)

which is a smooth function of (x̃, ỹ, x̂, ŷ). On the other hand,

ρ = r2 sin θ cos θ = ρ̂ρ̃

is not smooth, but its square is. This implies that all the functions appearing in the metric
are smooth functions of (x̃, ỹ, x̂, ŷ), except perhaps at zeros of the functions Ri and of the
denominators; the former clearly do not occur at sufficiently large distances, while the
denominators have no zeros for ρ > 0 by section 5.3, and at ρ = 0 away from the points ai
by sections 5.4 and 5.8.1.

To control the asymptotics we note that µi = O(r2), but more precise control is needed.
Setting R2 := ρ2 + z2 = r4/4, a Taylor expansion within the square root gives

µi =
√
ρ2 + (z − ai)2 − (z − ai)

= R

√
1−

2zai − a2
i

R2
− (z − ai)

=
(
r2 + 2ai + 2

a2
i

r2
(1 + cos 2θ)

)
sin2 θ +O(r−4)

= (r2 + 2ai) sin2 θ +O(r−2) .

For z ≤ 0 this can be rewritten as

µi =
(
r2 + 2ai +O

(
r−2
))

sin2 θ . (3.7)

To see that the last equation remains valid for z ≥ 0 we write instead

µi =
ρ2√

ρ2 + (z − ai)2 + (z − ai)

=
R2 sin2 2θ

R

√
1− 2zai−a2

i
R2 + (z − ai)
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=
R sin2 2θ

1− zai
R2 + z

R −
ai
R +O(R−2)

=
R sin2 2θ

(1 + z
R)(1− ai

R +O(R−2))

=
(
R+ ai +O(R−1)

) sin2 2θ
1 + cos 2θ

,

and we have recovered (3.7) for all z, for r large, uniformly in θ.
The above shows that µi − µj = O(1) for large r; in fact, for i 6= j,

µi − µj =
(
2(ai − aj) +O(r−2)

)
sin2 θ .

Keeping in mind that
ρ2 + µiµj ≈ r4 sin2 θ ,

where we use f ≈ g to denote that C−1 ≤ f/g ≤ C for large r, for some positive constant
C, we are led to the following uniform estimates

M0 ≈ r30 sin26 θ ,

M1 ≈ r24 sin28 θ sin2 2θ , M1
ρ2

µ1µ2
≈ r24 sin24 θ sin4 2θ ,

M2 ≈ r28 sin24 θ sin2 2θ , M2
µ1µ2

ρ2
≈ r28 sin28 θ ,

M3 ≈ r30 sin26 θ , M4 ≈ r30 sin26 θ ,

F ≈ r48 sin34 θ ,

Gx =
r2 sin2 2θ
4 sin2 θ

(
1 +O

(
r−2
))
≈ r2 cos2 θ ,

P = (µ3 µ4 + ρ2)2(µ1 µ5 + ρ2)(µ4 µ5 + ρ2) ≈ r16 sin8 θ .

This shows that, for large r,

Hx = F−1

M0 + c1 c2M3 + c21c
2
2M4︸ ︷︷ ︸

≈r30 sin26 θ

+O(r28 sin28 θ)

 ,

Hy = F−1 µ3

µ4

M0
µ1

µ2
+ c1 c2M3 + c21c

2
2M4

µ2

µ1︸ ︷︷ ︸
≈r30 sin26 θ

+O(r28 sin28 θ)

 ,

and in fact the ratio tends to 1 at infinity. We conclude that

gtt + 1 = O(r−2) ,

uniformly in angles.
In order to check the derivative estimates required for the usual notion of asymptotic

flatness, we note the formulae

µi = ai+1/2
(
− x̂2−ŷ2+x̃2+ỹ2+

√
4a2

i−4ai(x̂2+ŷ2−x̃2−ỹ2)+(x̂2+ŷ2+x̃2+ỹ2)2
)
,

ρ2 = (x̂2 + ŷ2)(x̃2 + ỹ2) .
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Since the µi’s and ρ2 are smooth functions at sufficiently large distances, it should be clear
that every derivative of any metric function decays one power of

√
x̂2 + ŷ2 + x̃2 + ỹ2 faster

than the immediately preceding one, as required.
The constant q appearing in the metric is determined by requiring that gtψ → 0 as r

tends to infinity. Equivalently, since gtt → −1,

q = − lim
r→∞

ωψ
Hy

.

Now,

−
ωψ
Hy

= −2
c1R1

√
M0M1 − c2R2

√
M0M2 + c21 c2R2

√
M1M4 − c1 c22R1

√
M2M4

FHy

√
Gx

= 2c2
µ4

µ3

R2

√
M0M2 + c1 c2R1

√
M2M4 +O(r29)√

Gx
(
M0

µ1

µ2
+ c1 c2M3 + c21c

2
2M4

µ2

µ1
+O(r28)

) ,
where we have not indicated the angular dependence of the subleading terms, but it is
easy to check that the terms kept dominate likewise near the axes. A Mathematica

calculation gives

q =
2c2κ1

2κ1 − 2κ1κ2 + c1c2κ3
,

which can be seen to be consistent with [4], when the required values of the ca’s are inserted.
In view of (3.6), the constant k > 0 needs to be chosen so that

k2 lim
r→∞

r2HxP = 1 .

One finds

k2 =
4κ2

1(−1 + κ2)2

(−2κ1(−1 + κ2) + c1c2κ3)2
,

as in [4]. From (3.7) and from what has been said so far one immediately finds

lim
r→∞

r−2 sin−2 θ gψψ = lim
r→∞

HxGy

r2 sin2 θHy

= lim
r→∞

Gy

r2 sin2 θ
= lim

r→∞

µ3µ5

r2 sin2 θ µ4

= 1 ,

as desired. Finally, it is straightforward that

lim
r→∞

r−2 cos−2 θ gϕϕ = lim
r→∞

Gx
r2 cos2 θ

= lim
r→∞

ρ2µ4

r2 cos2 θ µ3µ5

= 1 .

Further derivative estimates follow as before, and thus we have proved:

gµν − ηµν = O(r−2) , ∂i1 . . . ∂i`gµν = O(r−2−`) . (3.8)
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z P Gx = gϕϕ = ρ2µ4

µ3µ5
Gy = µ3µ5

µ4

z < a1 28(z − a3)2(z − a4)3(z − a1)(z − a5)2 − z−a4
2(z−a3)(z−a5)ρ

2 −2(z−a3)(z−a5)
z−a4

a1 < z < a5 26(z − a3)2(z − a4)3(z − a5)
(
a5−a1
z−a1

)
ρ2 − z−a4

2(z−a3)(z−a5)ρ
2 −2(z−a3)(z−a5)

z−a4

a5 < z < a4 24(z − a3)2(z − a4)2
(
a4−a5
z−a5

)
ρ4 2(z−a4)(z−a5)

z−a3

z−a3
2(z−a4)(z−a5)ρ

2

a4 < z < a3

(
a3−a4
z−a4

)2
ρ8 − z−a5

2(z−a4)(z−a3)ρ
2 −2(z−a4)(z−a3)

z−a5

a3 < z < a2 ρ8 2(z−a3)(z−a5)
z−a4

z−a4
2(z−a3)(z−a5)ρ

2

a2 < z ρ8 2(z−a3)(z−a5)
z−a4

z−a4
2(z−a3)(z−a5)ρ

2

Table 1. Leading order behaviour near ρ = 0 of P , Gx and Gy.

4 Conical singularities and the choice of c2

It is seen in table 1 below that gϕϕ vanishes for {z ≤ a5} ∪ {a4 < z ≤ a3}, while gρρ does
not, which implies that the set {z < a5} ∪ {a4 < z < a3} is an axis of rotation for ∂ϕ. In
such cases the ratio

lim
ρ→0

ρ2gρρ
gϕϕ

determines the periodicity of ϕ needed to avoid a conical singularity at zeros of ∂ϕ, and
thus this ratio should be constant throughout this set. This leads to two equations. For
{z ≤ a1}, the choice of k already imposed by asymptotic flatness leads to

lim
ρ→0

gρρ
gϕϕ

ρ2 = 1 . (4.1)

Either by a direct calculation, or invoking analyticity at ρ = 0 across z = a5, one finds
that the same limit is obtained for a1 < z ≤ a5 with the choices of k ad c1 determined so
far. The requirement that (4.1) holds as well for a4 < z ≤ a3, together with the choice of
k already made, gives an equation that determines c2:

lim
ρ→0

gρρ
gϕϕ

ρ2 = 2(a2 − a1)(a3 − a4)×√
(a3 − a1)(a2 − a4)

(a2 − a5)(a3 − a5)(2(a3 − a1)(a2 − a4) + (a5 − a1)c1c2)2

= 1 .

Therefore, to avoid a conical singularity one has to choose

c2 = 2
(a3 − a1)c1S1 ± (a1 − a2)(a3 − a4)S2

(a1 − a5)(a5 − a2)(a5 − a3)c21
, (4.2)
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where

S1 = (a2 − a4)(a2 − a5)(a3 − a5) ,

S2 =
√

(a3 − a1)c21S1 .

Equivalently,

c2 =
√

2(a4 − a2)
±(a1 − a2)(a3 − a4) +

√
(a1 − a3)(a4 − a2)(a2 − a5)(a3 − a5)√

(a1 − a4)(a2 − a4)(a1 − a5)(a2 − a5)(a3 − a5)
,

as found in [4].
The case c2 = 0, which arose in section 2, is compatible with this equation for some

ranges of parameters ai; we return to this question in section 5.8.1.
It follows from the analysis of section 3 that the analogous regular-axis condition for

z > a2,

lim
ρ→0

gρρ
gψψ

ρ2 = 1 , (4.3)

is satisfied at sufficiently large distances when k assumes the value determined there. One
checks by a direct calculation (compare (5.30)) that the left-hand side of (4.3) is constant
on (a2,∞), and smoothness of the metric across {ρ = 0, z ∈ (a2,∞)} ensues.

5 The analysis

5.1 The sign of the µi’s

Straightforward algebra leads to the identity, for i 6= j,

ai − ak =
(µi − µk)(ρ2 + µiµk)

2µiµk
. (5.1)

Since all the µi’s are non-negative, vanishing only on a subset of the axis

A := {ρ = 0} ,

we conclude that

the µi − µk’s have the same sign as the ai − ak’s. (5.2)

Furthermore from (5.1) we find

κi :=
ai+2 − a1

a2 − a1
=

(µi+2 − µ1)(ρ2 + µ1µi+1)
2µ1µi+2(a2 − a1)

> 0 . (5.3)

We infer that the functions Mν , ν = 0, . . . , 4 are non-negative: indeed, this follows
from the fact that the µν ’s are non-negative, together with (5.2).
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5.2 Positivity of Hx for ρ > 0

We wish to show that Hx is non-negative, vanishing at most on the axis {ρ = 0}; note that
by the analysis in section 3, Hx certainly vanishes at θ = 0.

Now, Hx vanishes if and only if its numerator vanishes:

M0 + c21M1 + c1M3c2 +
(
M2 + c21M4

)
c22 = 0 . (5.4)

This equation may be seen as a quadratic equation for c2; its discriminant

∆ = c21M
2
3 − 4(M0 + c21M1)(M2 + c21M4)

can be brought, using Mathematica, to the form

∆ = −4(µ1 − µ2)2µ2
2µ3(µ2 − µ4)2µ4µ5ρ

2(µ1µ2 + ρ2)2(µ2µ3 + ρ2)2

×(µ2µ5 + ρ2)2
(
c21µ

2
1µ3µ4(µ1 − µ5)2 − (µ1 − µ3)2µ5(µ1µ4 + ρ2)2

)2

≤ 0 , (5.5)

the last inequality being a consequence of the non-negativity of the µi’s. Therefore, if a
real root exists away from the axis A , then ∆ = 0 at the root and c21 satisfies there

c21 =
(µ1 − µ3)2µ5(µ1µ4 + ρ2)2

µ2
1µ3µ4(µ1 − µ5)2

. (5.6)

On the other hand, the smoothness of the metric at ρ = 0 implies (compare (2.3))

c21 = L2 2κ1κ2

κ3
, (5.7)

where, following [4], L is a scale factor chosen to be L2 = a2 − a1. We rewrite (5.7) with
the help of (5.3),

c21 =
(µ3 − µ1)(µ4 − µ1)µ5(µ1µ3 + ρ2)(µ1µ4 + ρ2)

µ1µ3µ4(µ5 − µ1)(µ1µ5 + ρ2)
. (5.8)

Subtracting (5.6) from (5.8) leads to the equation

−(µ1 − µ3)µ5(µ2
1 + ρ2)(µ1µ4 + ρ2)

µ2
1µ3µ4(µ1 − µ5)2(µ1µ5 + ρ2)

×(
µ1µ3(µ1 − µ4) + µ1(µ4 − µ3)µ5 + (µ1 − µ3)ρ2

)
= 0 . (5.9)

It follows from (A.15), (5.2), and from non-negativity of µi that each term in the last line
of (5.9) is strictly negative away from A . We conclude that this equation can only be
satisfied for ρ = 0, hence Hx is non-zero for ρ 6= 0.
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5.3 Regularity for ρ > 0

In this section we wish to prove that the Black Saturn metrics are regular away from
the axis ρ = 0. For this it is convenient to review the three-soliton construction in [4].
The metric (A.1) was obtained by a “three-soliton transformation”, a rescaling, and a
redefinition of the coordinates.2 The following generating matrix

Ψ0(λ, ρ, z) = diag
{

1
(µ4 − λ)

,
(µ1 − λ)(µ4 − λ)
(µ2 − λ)(µ5 − λ)

,−(µ3 − λ)
(µ̄5 − λ)

}
(5.10)

was used, starting with the seed solution

G0 = diag
{

1
µ4
,
µ1µ4

µ2µ5
,−µ3

µ̄5

}
, (5.11)

where µ̄5 = −ρ2/µ5. The general n-soliton transformation yields a new solution G

with components

Gab = (G0)ab −
n∑

k,l=1

(G0)acm
(k)
c (Γ−1)kl m

(l)
d (G0)db

µ̃kµ̃l
(5.12)

(the repeated indices a, b, c, d = 1, . . . , D − 2 are summed over). The components of the
vectors m(k) are

m(k)
a = m

(k)
0b

[
Ψ−1

0 (µ̃k, ρ, z)
]
ba
, (5.13)

where m(k)
0b are the “BZ parameters”. The symmetric matrix Γ is defined as

Γkl =
m

(k)
a (G0)abm

(l)
b

ρ2 + µ̃kµ̃l
, (5.14)

and the inverse Γ−1 of Γ appears in (5.12). Here µ̃i stands for µi for those i’s which
correspond to solitons, or µ̄i for the antisolitons, where

µ̄i = −
√
ρ2 + (z − ai)2 − (z − ai) .

The three-soliton transformation is performed in steps:

• Add an anti-soliton at z = a1 (pole at λ = µ̄1) with BZ vector m(1)
0 = (1, 0, c1),

• add a soliton at z = a2 (pole at λ = µ2) with BZ vector m(2)
0 = (1, 0, c2), and

• add an anti-soliton at z = a3 (pole at λ = µ̄3) with BZ vector m(3)
0 = (1, 0, 0).

Recall the ordering a1 < a5 < a4 < a3 < a2, and we impose the regularity condi-
tion (5.7). Using these assumptions, we show that that the procedure described above
leads to a smooth Lorentzian metric on {ρ > 0}.

Firstly, we note that

• µi − µk 6= 0 for i 6= k and ρ > 0,
2It has been mentioned at the end of section 2.2 of [4] that the same solution can also be obtained (in a

slightly different form) as a result of a (simpler) two soliton transformation.
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• µi − µ̄k 6= 0 for ρ > 0,

where the first point follows from (5.1). The second statement is a consequence of: µi−µ̄k =√
ρ2 + (z − ai)2 +

√
ρ2 + (z − ak)2 + ai − ak, hence µi − µ̄k = 0 implies (ai − ak)2 =

(
√
ρ2 + (z − ai)2 +

√
ρ2 + (z − ak)2)2, which is equivalent to

ρ2 +
√
ρ2 + (z − ai)2

√
ρ2 + (z − ak)2 + (z − ai)(z − ak) = 0 .

The middle term dominates the absolute value of the last one, which implies that the last
equality is satisfied if and only if ρ = 0 and (z − ai)(z − ak) ≤ 0, in particular it cannot
hold for ρ > 0.

We conclude that ψ−1
0 is analytic in ρ and z on {ρ > 0

}
. Subsequently the components

of the vectors mk are analytic there (see (5.13)) and so is the matrix Γ (see (5.14)). The n-
soliton transformation (5.12) contains Γ−1, thus det Γ appears in denominator in all terms
in sum in (5.12) (excluding (G0)ab). Since the numerator of these terms contains analytic
expressions and a cofactor of Γ, then only the vanishing of det Γ may lead to singularities
in the metric coefficients gab on {ρ > 0

}
. We show below that det Γ does not have zeros

there provided that the free parameters satisfy the regularity conditions (5.7). This will
prove that the metric functions gtt, gtψ and gψψ are smooth away from {ρ = 0}. Hence

Hy

Hx
,

ωψ
Hx

,
Hy

Hx

((
ωψ
Hy

+ q

)2

− GyHx

Hy

)
,

are smooth for ρ > 0. This is equivalent to smoothness, away from the axis, of the set
of functions

Hy

Hx
,

ωψ
Hx

,
ω2
ψ

HyHx
.

Since Hx has been shown to have no zeros away from the axis, we also conclude that

ω2
ψ

Hy

is smooth away from ρ = 0.
The next steps in the construction of the line element (A.1) involve a rescaling by

ρ2 µ2

µ1µ3
and a change of t, Ψ coordinates t → t − qΨ, Ψ → −Ψ. These operations do not

affect the regularity of the metric functions.
Let us now pass to the analysis of det Γ. The metric functions gρρ = gzz, denoted as

e2ν in [4], can be calculated using a formula of Pomeransky [10]:

Hxk
2P ≡ e2ν = e2ν0

det Γ

det Γ(0)
kl

, (5.15)

where [4]

e2ν0 = k2µ2µ5(ρ2 + µ1µ2)2(ρ2 + µ1µ4)(ρ2 + µ1µ5)(ρ2 + µ2µ3)(ρ2 + µ3µ4)2(ρ2 + µ4µ5)
µ1(ρ2 + µ3µ5)(ρ2 + µ1µ3)(ρ2 + µ2µ4)(ρ2 + µ2µ5)

∏5
i=1(ρ2 + µ2

i )
,

(5.16)
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z Hx gϕϕ/gρρ = Gx
Hxk2P

z < a1 − (2(a1−a3)(a2−a4)+(a1−a5)c1c2)2

211(a1−a3)2(a2−a4)2(a1−z)(a3−z)3(a4−z)2(z−a5)3
22(a1−a3)2(a2−a4)2

(2(a1−a3)(a2−a4)+(a1−a5)c1c2)2k2 ρ
2 =ρ2

a1<z<a5
(a2c1−a1c2+a4(c2−c1))2(z−a1)

28(a1−a3)(a1−a4)(a2−a4)2(a3−z)3(a4−z)2(a5−z)2 ρ
−2 2(a3−a1)(a4−a1)(a4−a2)2

(a5−a1)(a2c1−a1c2+a4(c2−c1))2k2 ρ
2 =ρ2

a5<z<a4 ∼ ρ−4 ∼ 1 (black ring horizon ?)

a4<z<a3
(a1−a2)2(a4−z)(z−a5)

2(a1−a3)(a2−a4)(a2−a5)(a3−a5)(a3−z)ρ
−8 − (a1−a3)(a2−a4)(a2−a5)(a3−a5)

(a1−a2)2(a3−a4)2k2 ρ2 =ρ2

a3<z<a2 ∼ ρ−8 ∼ 1 (spherical horizon ?)

a2 < z ∼ ρ−8 ∼ 1

Table 2. Leading order behaviour near ρ = 0 of Hx and of gϕϕ/gρρ. The value 1 of the coefficient
in front of ρ2 is precisely what is needed for absence of conical singularities at the axis. We write
f ∼ ρα, for some α ∈ R, if the leading order behaviour of f , for small ρ, is f = Cρα, for some
constant C depending upon the parameters at hand, the exact form of which was too long to be
displayed here. The question marks concerning the horizons are taken care of in section 5.5–5.7.

and where Γ(0) corresponds to Γ with c1 = c2 = 0. But from what has been said the
functions det Γ(0) and P do not have zeros for ρ > 0. Since we have shown that Hx does
not have zeros there, the non-vanishing of det Γ follows.

We conclude that the metric functions appearing in the Black Saturn metric (A.1) are
analytic for ρ > 0. It remains to check that the resulting matrix has Lorentzian signature.
This is clear at large distances by the asymptotic analysis of the metric in section 3, so
the signature will have the right value if and only if the determinant of the metric has no
zeros. This determinant equals

det gµν = −ρ2H2
xk

4P 2 . (5.17)

and its non-vanishing for ρ > 0 follows from section 5.2.

5.4 The “axis” {ρ = 0}

The regularity of the metric functions on the axis {ρ = 0} requires separate attention. The
behaviour, near that axis, of the functions that determine the metric depends strongly on
the part of the z axis which is approached. For example, the µi’s are identically zero for
z ≥ ai at ρ = 0, but are not for z < ai. This results in an intricate behaviour of the
functions involved, as illustrated by tables 1 and 2.

5.4.1 gϕϕ

A complete description of the behaviour of gϕϕ at ρ = 0 can be found in table 1. One can
further see from table 2 that the Killing vector field ∂ϕ has a smooth axis of rotation on
{ρ = 0, z < a5} ∪ {ρ = 0, a4 < z < a3}, as already discussed in section 4.
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5.4.2 gtt

At ρ = 0, z < a1, the metric function gtt is a rational function of z with denominator

α(a1 − z)(a2 − z)(a4 − z) , (5.18)

where

α := (2(a1 − a3)(a2 − a4) + c1c2(a1 − a5))2

=
4(a1 − a2)2(a1 − a3)(a2 − a4)(a3 − a4)2

(a2 − a5)(a5 − a3)
.

So α is nonzero when all the ai’s are distinct. We have already seen that the singularity at
z = a1 is removable; the ones suggested by (5.18) at a2 and a4 are irrelevant at this stage,
since we have assumed z < a1 to obtain the expression.

From what has been proved in section 2, gtt extends analytically across z = a1, so the
last analysis applies on ρ = 0, a1 < z < a5.

The zeros of the denominator of gtt restricted to ρ = 0, a5 < z < a4 turn out not to
be obvious. It should be clear from the form of gtt that those arise from the zeros of the
numerator of Hx. This numerator turns out to be a complicated polynomial in the ai’s,
z, and the ci’s, quadratic in c2.3 As in section 2, we calculate the discriminant of this
polynomial, which reads

8(a1 − a2)2(a1 − a4)4(a1 − z)2(a2 − a4)2(a2 − a5)2(a3 − z)(a4 − z)(a5 − z) ,

and which is negative because of the last factor. We conclude that gtt does not have poles
in (a5, a4).

The apparent pole at z = a5 above is removable: Indeed one can compute the limit
z → a−5 using the formula for gtt at ρ = 0, z ∈ (a1, a5). After c1 is substituted, one obtains
a rational expression with denominator

(a2 − a5)(a1 − a5)(a4 − a5)

(√
(2(a1 − a3)(a4 − a1))

(a1 − a5)
(a2 − a4) + (a4 − a1)c2

)2

. (5.19)

Substituting c2 into the expression above we obtain

2(a1 − a2)2(a1 − a4)(a2 − a4)(a3 − a4)2(a4 − a5)
a3 − a5

,

which does not vanish provided that all the ai’s are different. The same value of gtt is
obtained by taking the limit z → a+

5 for gtt in region ρ = 0, z ∈ (a5, a4). So we conclude
that gtt|ρ=0 is continuous at z = a5. A similar calculation establishes continuity of gtt|ρ=0

at z = a4; here the relevant denominator of the limit z → a−4 reads:

2(a2 − a1)2(a2 − a4)(a4 − a1)(a4 − a5) .
3The reader is warned that the numerators listed below depend upon whether or not the constants ca

and k have been replaced by their values in terms of the ai’s.
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The denominator of gtt restricted to ρ = 0, a4 < z < a3 can be written as

2(a1 − a2)2(a1 − z)(a2 − z)(z − a5) ,

and is therefore smooth on this interval, extending continuously to the end points.
Non-existence of zeros of the denominator of gtt restricted to ρ = 0, a3 < z < a2 can be

proved similarly as for a5 < z < a4. After factorisations and cancellations, the numerator
of Hx there is a complicated polynomial in the ai’s, z, and the ci’s, quadratic in c2. The
discriminant of this polynomial equals

8(a1 − a2)2(a1 − a3)4(a1 − z)2(a2 − a3)2(a2 − a5)2(a3 − z)(a4 − z)(a5 − z) ,

which is negative because of the third-to-last factor. We conclude that gtt is smooth in a
neighbourhood of {ρ = 0, z ∈ (a3, a2)}. The continuity of gtt|ρ=0 at z = a3 may again be
checked by taking left and right limits.

Non-existence of zeros of the denominator of gtt restricted to ρ = 0, a2 < z can again be
proved by calculating a discriminant. The numerator of Hx there is a quadratic polynomial
in c2, with discriminant

32(a1 − a2)2(a1 − a3)4(a1 − z)2(a2 − a4)2(a3 − z)(a4 − z)(a5 − z) .

This is negative because each of the three last factors is negative. We conclude that gtt is
smooth on a neighbourhood of {ρ = 0, z ∈ (a2,∞)}.

5.4.3 Ergosurfaces

The ergosurfaces are defined as the boundaries of the set gtt ≤ 0. Their intersections with
the axis are therefore determined by the set where gtt vanishes on the axis. We will not
undertake a systematic study of those, but only make some general comments; see [5] for
some results concerning this issue.

Near the points ai the numerator of gtt has the following behaviour:

∼ c22 for a1(see (2.2)),

∼ ((a2 − a4)(a1 − a5)c1 + (a4 − a1)(a2 − a5)c2)2 for a5, a4,

∼ ((a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2)2 for a3,

∼ ((a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2)2(a2 − z) near a−2 ,

∼ (2(a1 − a3)(a2 − a4) + (a1 − a5)c1c2)2(a2 − z) near a+
2 ,

where ∼ stands for a manifestly non-vanishing proportionality factor. This shows that a
component of the ergosurface always intersects the axis at z = a2. It also follows from the
above that the intersection of the ergosurface with the axis {ρ = 0} contains z = a1 and
z = a2 as isolated points when c2 = 0.

Next, a Mathematica calculation (in which c1 has been replaced by its values in
terms of the ai’s) shows that on (−∞, a5) the metric function gtt|ρ=0 can be written as a
rational function with numerator which is quadratic in z. Recall that the numerator does
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Figure 1. gtt|ρ=0 as a function of z for a1 = 0, a2 = 1, a3 = 3/4, a4 = 1/2, a5 = 1/4. In this case
the ergosurface encloses both horizons.

not change sign on (−∞, a5), so gtt|ρ=0 is continuous with at most two zeros there. But
gtt|ρ=0 is negative for large negative z, while at z = a5 we have

gtt(ρ = 0, z = a5) =
(a5 − a3) (c1(a1 − a5)(a2 − a4) + c2(a4 − a1)(a2 − a5))2

(a5 − a1)(a2 − a5)(a5 − a4) (a2c1 − a1c2 + a4(c2 − c1))2
, (5.20)

which is strictly positive. We conclude that gtt|ρ=0 always has precisely one zero on
(−∞, a5).

In figure 1 we show the graph of gtt|ρ=0 for a set of simple values of parameters.

5.4.4 gρρ and gzz

The metric functions gρρ = gzz on ρ = 0, z ∈ (a1, a5) equal

− a4 − z
2(a3 − z)(z − a5)

, (5.21)

and are therefore smooth there. By analyticity, the same expression is valid for z ∈
(−∞, a5).

The metric function gρρ on ρ = 0, z ∈ (a5, a4) can be written as a rational function of
z, with denominator

4(a1 − a2)2(a2 − a4)(a2 − z)(a3 − a4)2(a4 − z)(z − a5) ,

and is thus smooth near {ρ = 0, z ∈ (a5, a4)}.4 One checks that for z > a5 and close to a5

we have
gρρ|ρ=0 =

a4 − a5

2(a3 − a5)(z − a5)
+O(1) , (5.22)

leading to a pole of order one when a5 is approached from above. Comparing with (5.21)
one finds that |z − a5| × gρρ|ρ=0 is continuous at a5.

4This denominator has been obtained by substituting the values of k and c1, but not c2.
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Next, for z < a4 and close to a4 we have

gρρ|ρ=0 =
a5 − a4

2(a3 − a4)(z − a4)
+O(1) , (5.23)

leading to a pole of order one when a4 is approached from below.
The metric function gρρ on ρ = 0, z ∈ (a4, a3) equals

− z − a5

2(z − a3)(z − a4)
(5.24)

with simple poles at a4 and a3. Comparing with (5.23) one finds that

|z − a4| × gρρ|ρ=0

is continuous at a4.
The metric function gρρ on ρ = 0, z ∈ (a3, a2) can be written as a rational function of

z, with denominator

4(a1 − a2)2(a1 − a3)(a2 − a3)(a3 − a4)2(a1 − z)(a2 − z)(a3 − z)(z − a5) ,

which has been obtained by substituting in k, but neither c1 nor c2. For z > a3 and close
to a3 we have

gρρ|ρ=0 =
a3 − a5

2(a3 − a4)(z − a3)
+O(1) , (5.25)

and there is a first order pole when z = a3 is approached from above. Comparing with (5.24)
one finds that |z − a3| × gρρ|ρ=0 is continuous at a3. Again, for z < a2 and close to a2

we have

gρρ|ρ=0 =
(a1 − a3)(a3 − a5)

(
2(a2 − a3)(a2 − a4) + (a2 − a5)c22

)
4(a1 − a2)(a2 − a3)(a3 − a4)2(a2 − z)

+O(1) , (5.26)

Since c2 is real, the numerator of the leading term does not vanish. Therefore, gρρ|ρ=0 has
a first order pole when z = a2 is approached from below.

The metric function gρρ on ρ = 0, z ∈ (a2,∞) can be written as a rational function of
z, with denominator 4

4(a1 − a2)2(a3 − a4)2(−a2 + a4)(a2 − z)(a3 − z)(−a5 + z) .

Finally, for z > a2 and close to a2 we have

gρρ|ρ=0 = −(a1 − a3)(a3 − a5)(2(a2 − a3)(a2 − a4) + (a2 − a5)c22)
4(a1 − a2)(a2 − a3)(a3 − a4)2(a2 − z)

+O(1) . (5.27)

This coincides with (5.26) except for an overall sign. Again, with c2 being real the nu-
merator of the leading term cannot vanish, so the limits from above and from below of
|z − a2| × gρρ|ρ=0 at z = a2 are different from zero, and coincide.
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5.4.5 gtψ and gψψ

We pass now to the singularities of

gtψ = −Hy

Hx

(
ωψ
Hy

+ q

)
on the axis ρ = 0. It turns out that the calculations here are very similar to those for
gtt, keeping in mind that the interval (−∞, a5) was handled in section 2. In particular the
lack of zeros of the relevant denominators on each subinterval of the z-axis is established
in exactly the same way as for gtt, while continuity at the ai’s is obtained by checking the
left and right limits. This results most likely from the rewriting

gtψ = −
Fωψ + qFHy

FHx
,

and noting that, away from the ai’s, any infinities of gtψ|ρ=0 can only result from zeros of
FHx. In any case, a Mathematica calculation shows that no further infinities in gtψ|ρ=0

arise on the axis from Fωψ +qFHy, and in fact the denominators of gtψ|ρ=0, when this last
function is written as a rational function of the z’s, ai’s, and the ci’s, coincide with those
of gtt|ρ=0. So, we find that gtψ is smooth near

I := {ρ = 0, z ∈ (−∞, a5) ∪ (a5, a4) ∪ (a4, a3) ∪ (a3, a2) ∪ (a2,+∞)} . (5.28)

For the remaining points a2, . . . , a5, we write instead

gtψ = gtt

(
ωψ
Hy

+ q

)
. (5.29)

Using Mathematica we verified that the left and right limits of (ωψ/Hy)|ρ=0 at ai=1,5,4,3

are equal, but the left and right limit at a2 is not. These are, respectively:

2(a2 − a4)
c2

for a1,

2(a1 − a2)(a1 − a4)(a2 − a4)
(a2 − a4)(a1 − a5)c1 + (a4 − a1)(a2 − a5)c2

for a5, a4,

2(a1 − a2)(a1 − a3)(a2 − a3)
(a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2

for a3, a
−
2 ,

2(a1 − a2)(a1 − a3)c2
2(a1 − a3)(a2 − a4) + (a1 − a5)c1c2

for a+
2 .

(Note that the first line above contains an inverse power of c2, and so the case c2 = 0 requires
separate attention; this is handled in section 5.8.1). On the other hand, the numerator of
gtt on ρ = 0 has already been analysed in section 5.4.3, we repeat the formulae for the
convenience of the reader

∼ c22 for a1(see (2.2)),

∼ ((a2 − a4)(a1 − a5)c1 + (a4 − a1)(a2 − a5)c2)2 for a5, a4,

∼ ((a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2)2 for a3,

∼ ((a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2)2(a2 − z) near a−2 ,

∼ (2(a1 − a3)(a2 − a4) + (a1 − a5)c1c2)2(a2 − z) near a+
2 .
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Figure 2. The graph of gψψ on the axis for a1 = 0, a5 = 1
4 , a4 = 1

2 , a3 = 3
4 , a2 = 1.

We note that the z-independent terms above all have the same sign when c1c2 > 0, hence
they are not identically zero. Thus the factors displayed here in the numerator of gtt can be
cancelled with the corresponding factors in the denominator in the product gtt × (ωψ/Hy)
arising in (5.29). This implies that gtψ|ρ=0 is continuous for z ∈ R.

Consider next gψψ|ρ=0,

gψψ = gtt

(
ωψ
Hy

+ q

)2

− Gy
gtt

.

A Mathematica calculation shows again that the denominator of this function, when
written as a rational function of z and the ai’s, coincides with the denominator of gtt|ρ=0,
which has already been shown to have no zeros. This, implies that gψψ|ρ=0 is smooth near
the set appearing in (5.28).

From what has been said so far, to prove continuity of gψψ it remains to establish
continuity of Gy/gtt at z = ai. Now, Gy is continuous on ρ = 0 for z ∈ R and vanishes
for z ≥ a3 (see table 1) so gψψ|ρ=0 is continuous at {a5, a4, a3, a2}. We conclude that gψψ
is smooth near the set in (5.28), and that gψψ|ρ=0 is continuous at all z ∈ R. An example
graph of gψψ|ρ=0 can be found in figure 2.

However, the above is not the whole story about gψψ, as we need to know where
gψψ|ρ=0 vanishes; such points correspond either to lower dimensional orbits, or to closed
null curves.

It already follows implicitly from section 3 that gψψ|ρ=0 = 0 for z > a2 and, in fact, in
that interval of z’s we have

gψψ = gρρ(1 +O(ρ2))ρ2 , (5.30)

as needed for a regular “axis of rotation”. This formula is obtained by a direct Mathe-

matica calculation, in the spirit of the ones already done in this section. We emphasize
that we are not claiming uniformity of the error term O(ρ2) above as a2 is approached.

Note that gρρ > 0 away from the axis, and it follows from (5.30) that gψψ > 0 for
z > a2 and ρ > 0 small enough.

The question of the sign of gψψ|ρ=0 on the remaining axis intervals is addressed in
section 5.8.3 under the hypothesis that c2 = 0. In appendix B we give numerical evidence
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that gψψ|ρ=0 is positive on {z < a2} for general c2’s, see figure 5. The values of gψψ|ρ=0

at z = ai for i = 5, 4, 3 can be easily obtained by direct limits computation. As expected
from the continuity established earlier the right and left limits coincide and are equal to

(a5−a3)(q(c1(a1−a5)(a2−a4)+c2(a4−a1)(a2−a5))+2(a1−a2)(a1−a4)(a2−a4))2

(a1−a5)(a5−a2)(a5−a4)(a2c1−a1c2+a4(c2−c1))2
for a5,

(q(c1(a1−a5)(a2−a4)+c2(a4−a1)(a2−a5))+2(a1−a2)(a1−a4)(a2−a4))2

2(a1−a2)2(a1−a4)(a4−a2)(a4−a5)
for a4,

(q(c1(a1−a5)(a2−a3)+c2(a3−a1)(a2−a5))+2(a1−a2)(a1−a3)(a2−a3))2

2(a1−a2)2(a1−a3)(a3−a2)(a3−a5)
for a3.

From the ordering of ai’s (A.15) it follows that gψψ(ρ = 0, z = ai) > 0 for i = 5, 4, 3 if the
parameters are distinct.

Finally, we need to check the signature of the metric. A Mathematica calculation
shows that near I, as defined in (5.28), we can write

det gµν = (f +O(ρ2))ρ2 , (5.31)

where f is an analytic function of z; for example,

f =

{
z−a4

2(a3−z)(z−a5) , z < a5 ;
z−a5

2(a3−z)(z−a4) , a4 < z < a3 .
(5.32)

(No uniformity near the end points is claimed for the error term in (5.31).) The explicit
formulae for f on the remaining intervals are too long to be usefully cited here. We simply
note that we already know that the determinant of the metric is strictly negative for ρ > 0,
and thus f ≤ 0 on the axis by continuity. However, f could have zeros, which need to
be excluded. Clearly there are no such zeros in the intervals listed in (5.32). Next, in
the region z > a2 one finds that f = −h2, where h is a quadratic function of c2. The
discriminant of h with respect to c2 reads

32(a1 − a2)2(a1 − a3)4(a2 − a4)2(a1 − z)2(a3 − z)(a4 − z)(a5 − z) .

This is strictly negative for z > a2 and we conclude that f does not vanish on this interval.
Taking into account the polar character of the coordinates (ρ, ϕ) and (ρ, ψ) near the

relevant intervals of z, what has been said so far together with formula (5.31) implies that
g is a smooth Lorentzian metric on

R4 \ {ρ = 0 , z ∈ [a5, a4] ∪ [a3, a2]} .

The missing open intervals, and their end points, need separate attention; this will be
addressed in sections 5.5 and 5.6.

5.5 Extensions across Killing horizons

It is expected that the interval z ∈ [a5, a4] lying on the coordinate axis ρ = 0, corresponds
to a ring Killing horizon with topology R × S1 × S2, while z ∈ [a3, a2] corresponds to a
spherical Killing horizon, with topology R × S3. The aim of this section is to establish
this, modulo possibly the end points where the axis meets the Killing horizon; this will
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be addressed in the next section. The construction mimics the corresponding extension
procedure for the Kerr metric, see also [7, section 3] or [1].

Let a ∈ R and let m > 0 be given by

m2 =
(
aj − ai

2

)2

+ a2 ,

set r± = m ±
√
m2 − a2. As a first step of the construction of an extension on [ai, aj ] =

[a5, a4] or [ai, aj ] = [a3, a2] we introduce the usual coordinates r̃ and θ̃ for the Kerr metric:

r̃ =
Ri +Rj

2
+m , θ̃ = cos−1

(
Rj −Ri
ai − aj

)
, (5.33)

with inverse transformation (see, e.g., [9, (1.133), p. 27])

ρ =
√
r̃2 − 2mr̃ + a2 sin(θ̃) ≡

√
(r̃ − r−)(r̃ − r+) sin(θ̃) , (5.34)

z =
ai + aj

2
+ (r̃ −m) cos(θ̃) . (5.35)

Note that in the above conventions we have aj > ai.
In the (r̃, θ̃) coordinates the flat metric γ := dρ2 + dz2 remains diagonal,

γ =
(

(r̃ −m)2 −
(
m2 − a2

)
cos2(θ̃)

)
×
(

dr̃2

(r̃ −m)2 − (m2 − a2)
+ dθ̃2

)
(5.36)

=
(

ρ2

sin2 θ̃
+ (m2 − a2) sin2 θ̃

)(
sin2 θ̃

ρ2
dr̃2 + dθ̃2

)
(5.37)

= RiRj

(
dr̃2

(r̃ − r−)(r̃ − r+)
+ dθ̃2

)
(5.38)

= RiRj

(
2
(
RiRj + (z − ai)(aj − z)− ρ2

)
ρ2(ai − aj)2

dr̃2 + dθ̃2

)
, (5.39)

where the various forms of the metric γ have been listed for future reference.
The essential parameter above is m2 − a2, in the sense that a change of m and a that

keeps m2−a2 fixed can be compensated by a translation in r̃, without changing the explicit
form of γ. The replacement of

√
m2 − a2 by −

√
m2 − a2 can be compensated by a change

of the sign of (r̃ −m), which again does not change the explicit form of γ.
We have, near ρ = 0, for ai < z < aj , with error terms not necessarily uniform over

compact sets of z,

γr̃r̃ =
4(ai − z)2(aj − z)2

ρ2(ai − aj)2
+O(1) , (5.40)

γθ̃θ̃ = |(z − ai)(z − aj)|+O(ρ2) . (5.41)

Now, the Black Saturn metric depends upon ρ through ρ2 only, with the latter being
an analytic function of r̃ and θ̃. In the new coordinate system all the metric functions
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extend analytically across {ρ = 0, z ∈ (ai, aj)} except gr̃r̃, which has a first order pole in
r̃ at r̃ = r±. In the original coordinate system we start with r̃ > r+ and it is not clear
whether or not r = r− can be reached in the analytic extension, but we need to get rid
of the pole at r̃ = r+ in any case. For this, it is convenient to continue with a general
discussion. We consider a coordinate system (xµ, y) ≡ (x0, xi) ≡ (x0, xA, y), where µ runs
from 0 to n− 1, and we suppose that:

1. The metric functions gµν are defined and real analytic near y = y0, except for gyy
which is meromorphic with a pole of order one at y0.

2. The determinant of the metric is bounded away from zero near y = y0.

3. There exists a Killing vector field ξ of the form

ξ = ∂0 + αi∂i ,

for some set of constants αi, such that all the functions

gµνξ
µ

vanish at y = y0.

In our case the first condition has just been verified with

y = r̃ , y0 = r± .

The determinant condition holds by inspection of the metric, see tables 1 and 2.
The third condition is verified by a Mathematica calculation, leading to a Killing

vector ∂t + ΩS3∂ψ, where

ΩS3 = −
(

2(a1 − a2)(a1 − a3)(a2 − a3)
(a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2

+ q

)−1

,

satisfying the condition on (a3, a2), and the Killing vector ∂t + ΩS1×S2∂ψ , with

ΩS1×S2 = −
(

2(a1 − a2)(a1 − a4)(a2 − a4)
(a2 − a4)(a1 − a5)c1 + (a4 − a1)(a2 − a5)c2

+ q

)−1

,

satisfying the condition on (a5, a4). A rather lengthy Mathematica calculation shows
that the Ω’s are finite for distinct ai’s.

We introduce new coordinates (x̂µ, ŷ) ≡ (x̂0, x̂A, ŷ) ≡ (x̂0, x̂i) by the formula

x̂0 = x0 , x̂i = xi − αix0 . (5.42)

This coordinate transformation has Jacobian one. Writing gµ̂ν̂ for g(∂x̂µ , ∂x̂µ), our hy-
potheses imply that we can write

g0̂µ̂ = (y − y0)χµ̂, gŷŷ =
h

(y − y0)
, (5.43)

for some functions χµ̂, h, all analytic near y0.
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Since the metric functions are now independent of x̂0, the next coordi-
nate transformation

dx̃0 = dx̂0 + f(ŷ)dŷ , x̃A = x̂A , ỹ = ŷ ,

again with Jacobian one, does not affect the analyticity properties of the functions involved.
We have

g0̂0̂(dx̂0)2 + gŷŷdŷ
2 = (y − y0)χ0̂

(
dx̃0 − fdŷ

)2 +
h

(y − y0)
dŷ2

= (y − y0)χ0̂(dx̃0)2 − 2(y − y0)χ0̂fdx̃
0dŷ

+
h+ (y − y0)2χ0̂f

2

(y − y0)
dŷ2 . (5.44)

Assume that

κ := − lim
y→y0

h

χ0̂

is a positive constant. Keeping in mind that χ0̂ is negative while h is positive, and choosing
f as

f =
√
κ

y − y0
, (5.45)

one obtains a smooth analytic extension of the metric through y = y0, since then the
singularity in (5.44) is removable; similarly

g0̂̂idx̂
0dx̂i = (y − y0)χî

(
dx̃0 − fdŷ

)
dx̂i

= (y − y0)χîdx̃
0dx̂i − χî

√
κdŷdx̂i .

The determinant of the metric in the coordinate system x̃µ equals that in the original
coordinates, and so the extended metric is Lorentzian near y = y0.

It remains to show that this procedure applies to the BS metric, with

x0 = t , y − y0 := r̃ − r+ , (xA) = (ϕ,ψ, θ̃) ,

where r̃ and θ̃ have been defined in (5.33). We have

r̃ − r+ =
(aj − ai)ρ2

4(aj − z)(z − ai)
+O(ρ4) ,

hence

(r̃ − r−) sin2 θ̃ =
4(aj − z)(z − ai)

(aj − ai)
+O(ρ2) ,

with the error term not uniform in z near the end points. On (a5, a4) or on (a3, a2) one
needs to calculate the limits

h|r̃=r+ = lim
ρ→0

Hxk
2P

(r̃ − r−) sin2 θ̃
× lim
ρ→0

(ρ2γr̃r̃) .
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Letting Ω = ΩS1×S2 on (a5, a4), respectively Ω = ΩS3 on (a3, a2), one further needs

χ0̂|r̃=r+ = lim
ρ→0

(
ρ−2g(∂t + Ω∂ψ, ∂t + Ω∂ψ)(r̃ − r−) sin2 θ̃

)
.

A surprisingly involved Mathematica calculation shows that at ρ = 0 the quotient h/χ0

equals, up to sign,

(a4 − a5)(2(a1 − a2)(a1 − a4)(a2 − a4) + ((a2 − a4)(a1 − a5)c1 + (a4 − a1)(a2 − a5)c2)q)2

8(a1 − a2)2(a2 − a4)(a3 − a4)2(a4 − a1)

on (a5, a4), and

(a3 − a5)(2(a1 − a2)(a1 − a3)(a2 − a3) + ((a2 − a3)(a1 − a5)c1 + (a3 − a1)(a2 − a5)c2)q)2

8(a1 − a2)2(a2 − a3)(a3 − a1)(a3 − a4)2

on (a3, a2). As those limits are constants, we have verified that, within the current
range of parameters, the Black Saturn metric can be extended across two non-degenerate
Killing horizons.

5.6 Intersections of axes of rotations and horizons

It follows from (5.33) that

Ri = r̃ − r+ +
aj − ai

2
(cos θ̃ + 1) , (5.46)

Rj = r̃ − r+ +
aj − ai

2
(1− cos θ̃) , (5.47)

µi = (r̃ − r+)(1− cos θ̃) , (5.48)

µj = (r̃ − r−)(1− cos θ̃) , (5.49)

so that µi, µj , Ri and Rj are smooth functions of r̃ and cos θ̃.5 Furthermore, it follows
from (5.34) that the function ρ2 is a smooth function of r̃ and of sin2 θ̃ = 1−cos2 θ̃, similarly
z is smooth in cos θ̃ by (5.35), which implies that the remaining µ`’s (compare (5.51)-(5.52))
are smooth in r̃ and cos θ̃.

Now, consider any rational function, say W , of the µi’s and ρ2, which is bounded near
r̃ = r+, θ̃ = 0. Boundedness implies that any overall factors of r̃ − r+ in the denominator
of W are cancelled out by a corresponding overall factor in the numerator, leaving behind
a denominator d(r̃, θ̃) which can be written in the form

d(r̃, θ̃) = f̊(cos θ̃) + (r̃ − r+)̊g(r̃, cos θ̃) ,

for some functions f̊ and g̊ which are smooth in their respective arguments. If

d(r̃ = r+, 0) ≡ f̊(1)

does not vanish at θ̃ = 0, then the denominator d is bounded away from zero near r̃ = r+
and θ̃ = 0. This in turn implies that 1/d is smooth in a neighbourhood of the point
concerned, and therefore so is W .

5It should be kept in mind that cos θ̃ is a smooth function on the sphere, but sin θ̃ is not.
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An identical argument applies at θ̃ = π.
This reasoning does not seem to apply to ωψ, because of the square roots there. How-

ever, as mentioned in appendix A.1, these appear in the form√
M0M1

Gx
,

√
M0M2

Gx
,

√
M1M4

Gx
,

√
M2M4

Gx
.

One checks that the expressions under the square root are squares of rational functions of
the µi’s, and of ρ2, and so the metric functions involving ωψ are also rational functions of
the µi’s and ρ2.

Since we have already shown that the suitably reduced denominators of all the scalar
products g(X,Y ), where X,Y ∈ {∂t, ∂ψ, ∂ϕ}, have no zeros at the axis points ρ = 0,
z = ai, we conclude that the corresponding metric coefficients are analytically extendible,
by allowing r̃ to become smaller than r+, including near the intersections of axes of rotation
with the Killing horizons.

One similarly establishes analytic extendibility of gt̃ỹ:

gt̃ỹ = −
(gtt + 2gtψΩ + gψψΩ2)

√
κ

r̃ − r+
.

Here we have already verified that gtt + 2gtψΩ + gψψΩ2 is an analytic function of r̃ and
cos θ̃, and extendibility of gt̃ỹ readily follows from the fact that Ω has been chosen so that
this function vanishes at r̃ = r+.

Finally, gỹỹ is given by the formula

gỹỹ =

√
κgt̃ỹ + (r̃ − r+)gr̃r̃

r̃ − r+
. (5.50)

To analyse this metric function, by a Mathematica calculation we verified that the re-
duced denominator of (r̃ − r+)gr̃r̃ does not vanish at r̃ = r+, and hence this function
extends across r̃ = r+ as an analytic function of r̃ and cos θ̃. Keeping in mind that the
same has already been established for

√
κgt̃ỹ, we find that the numerator of (5.50) extends

across r̃ = r+ as an analytic function of r̃ and cos θ̃. Analytic extendibility of gỹỹ follows
again from standard factorisation properties of such functions.

We next analyse gθ̃θ̃ near ρ = 0, z = a4. Now,

gθ̃θ̃ = Hxk
2Pγθ̃θ̃ = gρρRiRj ,

and we need to understand the behaviour of the functions above near r̃ = r+, θ̃ ∈ {0, π}.
For ` 6= 5 we have

µ`µ5 + ρ2 =
(

(r̃ − r−) sin2 θ + µ`(1− cos θ̃)
)

(r̃ − r+) , (5.51)

and since

µ1 =
ρ2

R1 + z − a1
≈ ρ2

2(a4 − a1)
(5.52)
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near ρ = 0, z = a4, for ` = 2, 3 we can write

µ`µ4 + ρ2 =
(
r̃ − r+ +

µ`

1 + cos θ̃

)
(r̃ − r−) sin2 θ̃ , (5.53)

µ`µ5 + ρ2 =
(
r̃ − r− +

µ`

1 + cos θ̃

)
(r̃ − r+) sin2 θ̃ , (5.54)

µ4µ5 + ρ2 =
2(r̃ − r−)
1 + cos θ̃

(r̃ − r+) sin2 θ̃ , (5.55)

µ1µ` + ρ2 ≈
(
a` − a4

a4 − a1
+ 1
)
ρ2

=
a` − a1

a4 − a1
(r̃ − r−)(r̃ − r+) sin2 θ̃ . (5.56)

Finally, for ` = 1, 4, 5,

µ1µ` + ρ2 ≈ ρ2 = (r̃ − r−)(r̃ − r+) sin2 θ̃ . (5.57)

Encoding this behaviour into a Mathematica calculation, one finds that gθ̃θ̃ is uniformly
bounded in a neighbourhood of r = r+, cos θ̃ ∈ {±1}, with non-vanishing value of the
denominator as needed above. This establishes smoothness. Similarly gϕϕ/ sin2 θ̃ is smooth
near those points.

Now, away from, and near to, the event horizons, the map (ρ, z) 7→ (r̃, θ̃) is a
smooth coordinate transformation. From what has been already established, the two-
dimensional metric

gθ̃θ̃dθ̃
2 + gϕϕdϕ

2 (5.58)

is thus a smooth metric for r̃ > r+, r̃ close to r+, in particular there is no conical singularity
at the rotation axis for ∂ϕ in this region. But the arguments just given show that this metric
extends smoothly across r̃ = r+, which finishes the proof of smoothness of the whole metric
up-to-and-beyond the horizon near r̃ = r+, θ̃ = 0.

A similar analysis applies near a5, a3 and a2; in this last case, one considers the
two-dimensional metric

gθ̃θ̃dθ̃
2 + gψψdψ

2

instead of (5.58).

5.7 Event horizons

Consider the manifold, say M , obtained by adding to the region r̃ > r+ those points
in the region r− < r̃ for which the metric is smooth and Lorentzian. Then the region
r− < r̃ ≤ r+ is contained in a black hole region in the extended space-time, which can be
seen as follows: Note, first, that gyy vanishes at H := {r̃ = r+} = {y = y0}, which shows
that H is the union of two null hypersurfaces. On each connected component of H the
corresponding Killing vector X = ∂t+Ω∂ψ is timelike future pointing for y > y0 close to y0,
and so by continuity X is future pointing on H . This implies that H is locally achronal
in the extended space-time: if a future directed timelike curves crosses H through a point
p ∈ H , it does so towards that side of TpH which contains the component of the set of
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causal vectors at p containing X. Since H is a (closed) separating hypersurface in M ,
this implies that any timelike curve can cross H only once. From what has been said it
follows that the region r− < r̃ ≤ r+ is contained in a black hole region of (M , g).

In particular we have shown that the black hole region is not empty. A standard
argument (compare [2, section 4.1]) shows that H coincides with the black hole event
horizon in M . Note that this is true independently of stable causality of (M , g), or of
stable causality of the d.o.c. in (M , g).

Some more work is required to add the bifurcation surface of the horizon, a general
procedure how to do this is described in [11].

5.8 The analysis for c2 = 0

We turn our attention now to the Black Saturn solutions with c2 = 0, where the formulae
simplify sufficiently to allow a proof of stable causality of the d.o.c.

First note that (4.2) implies that the condition c2 = 0 leads to c1 6= 0 as the only
restriction on c1. However, it implies a fine-tuning of the parameters ai. One may easily
check that the minus sign solution for c2 cannot vanish if the ordering (A.15) of the ai’s
is assumed. However the plus sign solution may lead to the vanishing c2 under certain
additional conditions. Namely the resulting equation√

(a3 − a1)(a2 − a4)(a2 − a5)(a3 − a5) = (a2 − a1)(a3 − a4) ,

quadratic in a5, may always be solved for a5 = a5(a1, a2, a3, a4) ∈ R; the condition that
0 < a5 < a4 is then equivalent to

a4 < (a2
2 + a1a3 − 2a2a3)/(a1 − a3) . (5.59)

This is more transparent in terms of the variables κi ∈ [0, 1] defined by (5.3), as
then (5.59) becomes

κ1 >
1

2− κ2
, (5.60)

see figure 3. In the further analysis one should keep in mind that a5 is no more an
independent parameter.

Notice that c2 = 0 implies q = 0 and k = 1.

5.8.1 Smoothness at the axis

Smoothness of the Black Saturn solution for ρ > 0, proved in section 5.3, holds also for the
c2 = 0 case, hence only the analysis on the axis of rotation needs separate attention. We
shall proceed in the same way as in section 5.4.

We start with an analysis of the behaviour of gψψ on the axis. For z < a1 it may be
written as a rational function

−2(a1 − a3)2(a2 − z)(z − a2)(z − a4)(z − a5) + c1
2(a1 − a2)2(a1 − a5)2(a3 − z)

(a1 − a3)2(a1 − z)(z − a2)(z − a4)
.

To avoid the singularity at z = a1 we need to fix c1 as to have a finite limit. Miraculously,
this condition leads to the same formula c1 as obtained in section 2 for c2 6= 0. This is
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Figure 3. The variable κ1 runs along the horizontal axis, while κ2 runs along the vertical one.
The inequality (5.60) corresponds to the shaded region.

somewhat unexpected, since we have set c2 to zero as an alternative to fixing c1. With
this choice of c1 regularity on the axis of many metric functions has already been estab-
lished, and we would be done if not for the fact that some of the formulae derived so far
involve explicit inverse powers of c2. So it is necessary to repeat the analysis at the axis
from scratch.

Several formulae are much simpler now. For instance, one checks that in the region
a1 < z ≤ a5 on the axis gψψ is given by the same formula as for z < a1. Hence we conclude,
that gψψ is smooth and bounded for {ρ = 0, z < a5}.

In the subsequent axis interval, a5 < z < a4, gψψ is a rational function
with denominator

2(a1 − a2)2(a1 − a4)2(a3 − z)(a5 − z)− c12(a1 − a5)2(a2 − z)2(a4 − z) ,

which cannot vanish, being a sum of two negative terms. At both end points of the
investigated interval one of the terms in non-zero, which shows boundedness.

Moving further to the right we obtain a simple formula for gψψ:

2(a1 − z)(a2 − z)
(a5 − z)

, (5.61)

which immediately implies continuity for a4 ≤ z ≤ a3. We note that this is strictly positive,
and therefore near that axis interval gψψ is strictly positive as well.

In the region a3 < z < a2 the denominator of gψψ is more complicated:

(a1 − a5)2c21(a2 − z)2(a3 − z)− 2(a1 − a2)2(a1 − a3)2(a4 − z)(a5 − z),

but does not vanish, being a strictly negative sum of two non-positive terms.
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In the region z > a2 for vanishing c2 the function gψψ is proportional to q2. Since
c2 = 0 implies q = 0, we conclude that gψψ vanishes for z > a2, as already seen for general
values of c2 in any case.

The analysis of gtt is similar. For ρ = 0 and z < a5 the metric function gtt is a simple
rational function,

(a1 − z)(z − a3)
(z − a2)(z − a4)

, (5.62)

which is clearly continuous in the region z ≤ a5. For a5 < z < a4 the denominator of
gtt reads

(a1 − a5)2c21(a2 − z)2(a4 − z) + 2(a1 − a2)2(a1 − a4)2(a3 − z)(z − a5) . (5.63)

with both terms manifestly positive in the region a5 ≤ z ≤ a4. We conclude that gtt is
smooth on a5 < z < a4, bounded on a5 ≤ z ≤ a4.

Next, for a4 < z < a3 the denominator of gtt reads

2(a1 − a2)2(a1 − z)(z − a2)(z − a5) ,

thus it cannot vanish for a4 ≤ z ≤ a3. Moving further to the right we find the denominator
of gtt

(a1 − a5)2c21(a2 − z)2(a3 − z) + 2(a1 − a2)2(a1 − a3)2(a4 − z)(z − a5)

as a sum of manifestly negative terms on a3 < z < a2. Also the end points are singularity-
free. Finally, for z > a2 gtt equals

(z − a2)(z − a4)
(a1 − z)(z − a3)

, (5.64)

hence it is continuous. This proves directly absence of singularities for gtt on the axis in
the case of vanishing c2.

The analysis of gtψ can be carried out along the same lines, and is omitted.

5.8.2 Causality away from the axis

We have not been able to establish non-existence of closed timelike curves for a general
Black Saturn solution, though we failed to find any in a numerical search, see appendix B.
However, if one imposes the condition c2 = 0 the metric formulas simplify sufficiently to
allow a direct analysis. Indeed, the explicit formula for gψψ in the case of vanishing c2 (and
consequently q = 0) reads

µ1µ2µ5

(
ρ2
(
c1

2M1 +M0

)2 − 4c12M0M1R1
2
)

ρ2 (c12M1 +M0) (M0µ1
2 − c12M1ρ2)

=:
f(c21)
g(c21)

.

Outside the axis (ρ > 0) the ordering of µi’s is the same as those of ai’s and all the functions
Mi are strictly positive. Both the numerator and denominator of gψψ can be regarded as
quadratic functions of c21. Let us first investigate the possible zeros of the denominator:

g(c21) = 0⇒ c21 = −M0

M1
or c21 =

M0µ
2
1

M1ρ2
.
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Clearly only the second one is relevant since the first one would lead to an imaginary
coefficient c1. On the other hand, the equation f(c21) = 0 has two solutions:

c2± =
M0

(
2R1

(
R1 ±

√
R1

2 − ρ2
)
− ρ2

)
M1ρ2

.

To make this result more transparent let us express R1 in terms of µ1 and ρ

R1 =
µ2

1 + ρ2

2µ1
.

Then c2± may be written as

c2± =
M0

M1ρ2

(µ2
1 + ρ2)

(
µ2

1 + ρ2 ± |µ2
1 − ρ2|

)
− 2µ2

1ρ
2

2µ2
1

.

From the explicit form of µ1 one can easily see that sign(µ2
1 − ρ2) = sign(a1 − z), thus

we have:

for z ≤ a1 c
2
− =

M0µ
2
1

M1ρ2
, c2+ =

M0ρ
2

M1µ2
1

,

for z ≥ a1 c
2
− =

M0ρ
2

M1µ2
1

, c2+ =
M0µ

2
1

M1ρ2
.

We see that in both regions one of the zeros c2± of the numerator cancels the zero of the
denominator, which provides an alternative explicit proof of regularity of gψψ for ρ > 0.
Moreover we find:

gψψ =
µ1µ2µ5M1

ρ2 (c12M1 +M0)

(
M0ρ

2

M1µ2
1

− c21
)

=
µ2µ5

(
M0ρ

2 − c21M1µ
2
1

)
ρ2µ1 (c12M1 +M0)

.

Keeping in mind that the parameter c1 has been fixed to guarantee the regularity on the
axis, to obtain a sign for gψψ for ρ > 0 it remains to show that the equality

c21 =
M0ρ

2

M1µ2
1

can never be satisfied away from the axis. For this, we shall make use of the formula (5.8)
expressing c21 in terms of µi’s. By subtracting the two formulae for c21 we obtain

−
µ5(µ3 − µ1)

(
µ1µ4 + ρ2

)
µ1

4µ3µ4(µ1 − µ2)2(µ1 − µ5)2 (µ1µ5 + ρ2)
×(

µ1
3(µ1 − µ2)2(µ1 − µ4)(µ1 − µ5)

(
µ1µ3 + ρ2

)
+(µ1 − µ3)

(
µ1µ2 + ρ2

)2 (
µ1µ4 + ρ2

) (
µ1µ5 + ρ2

) )
= 0 .

The overall multiplicative coefficient in the first line is strictly negative, whereas the term
in parenthesis across the second and third lines is a polynomial in ρ with coefficients that
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can be written in the following, manifestly negative form

µ5
1

(
(µ1 − µ2)2µ3(µ1 − µ4) + µ5

(
µ2

2(µ4 − µ3) + (µ1 − µ4)µ3(µ2 + (µ2 − µ1))
))

+ρ2µ3
1

(
µ2(µ1 − µ3)(2µ4µ5 + µ2(µ5 + µ1))

+ (µ4 − µ1)
(
µ2

2(µ5 − µ3) + µ1((µ1 − µ2)− µ2)(µ5 − µ1)
) )

+ρ4µ2
1(µ1 − µ3)

(
µ2

2 + µ4µ5 + 2µ2(µ4 + µ5)
)

+ρ6µ1(µ1 − µ3)(2µ2 + µ4 + µ5)

+ρ8(µ1 − µ3) .

It follows that gψψ > 0 for ρ > 0 when c2 = 0.
It turns out that an alternative simpler argument for positivity can be given as follows:

Using (5.8) we may write gψψ in terms of µi and ρ. The functions µi satisfy the same
ordering as ai (A.15) (see (5.2)). The strict version of the ordering (A.15) implies a strict
ordering of the µi’s for ρ > 0. Assuming that, we may make the positivity of gψψ explicit
by expressing it in terms of the positive functions

∆51 = µ5 − µ1, ∆45 = µ4 − µ5, ∆34 = µ3 − µ4, and ∆23 = µ2 − µ3. (5.65)

The numerator and denominator of gψψ are polynomials in ∆ij , µ1 and ρ, the explicit
form of which is too long to be usefully exhibited here. By inspection one finds that all
coefficient of these polynomials are positive, and since the ∆ij ’s, µ1 and ρ are positive,
both the numerator and denominator of gψψ are positive.

5.8.3 Causality on the axis

We turn now our attention to the axis. By continuity, we know that gψψ at ρ = 0 is
non-negative. It therefore suffices to exclude zeros of gψψ|ρ=0. Equivalently, whenever we
find a manifestly non-zero value of gψψ(0, z), we know that this value cannot be negative.

Now, at ρ = 0 and for z < a1 we replace z by w := z− a1 < 0, and find that gψψ there
is a rational function with denominator

(a1 − a3)(a1 − a2 + w)(a1 − a4 + w) ,

which is seen to be strictly negative for w ≤ 0. On the other hand, the numerator is a
third-order polynomial in w:

2(a2 − a1)×
(

3a3
1 − a2

1(a2 + 2(2a3 + a4 + a5))

+ a1(2a2a3 + 3a3(a4 + a5) + a4a5)− a2(a3(a4 + a5)− a4a5)− 2a3a4a5

)
+ 2w(a3 − a1)

(
6a1(a1 − a2)− 3a1(a4 + a5) + a2

2 + 2a2(a4 + a5) + a4a5

)
+ 2w2(a3 − a1)(4a1 − 2a2 − a4 − a5)

+ 2w3(a3 − a1) .

Unless explicitly indicated otherwise, the remaining analysis uses the choice of origin and
scale given by a1 = 0 and a2 = 1, which involves no loss of generality for checking the sign
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of gψψ. The above reduces then to

−2((2a3 − 1)a4a5 + a3(a4 + a5)) + 2a3w(a4a5 + 2(a4 + a5) + 1)

−2a3w
2(a4 + a5 + 2) + 2a3w

3 .

Each monomial in the above polynomial is manifestly strictly negative for w < 0, except
perhaps for the zero-order term. However, when c2 = 0, in the current choice of scale we
necessarily have a3 > 1/2 by (5.59), which makes manifest the negativity of the zero-order
term as well. Hence gψψ|ρ=0 > 0 for z ≤ a1.

The interval (a1, a5) requires more work, and will be analysed at the end of this section.
For z ∈ (a5, a4) we obtain

gψψ|ρ=0 = − 2a4(z − 1)(a3 − z)
a3 (a4(a5(z − 2) + 1)− a5(z − 1)2) + a4(a5 − z)

,

which has no zeros in [a5, a4], and thus is positive there.
Positivity on [a4, a3] follows already from (5.61).
For z ∈ (a3, a2) we obtain

gψψ|ρ=0 = − 2a3(z − 1)(a4 − z)
a3(a4a5z − 2a4a5 + a4 + a5 − z)− a4a5(z − 1)2

,

which again has no zeros in [a3, a2], and hence is positive there.
We already know that {ρ = 0, z > a2} is a regular axis of rotation for ∂ψ, so there are

no causality violations there associated with ∂ψ.
We consider now the interval (a1, a5) = (0, a5). There we find

gψψ|ρ=0 =
f

a3(−1 + z)(−a4 + z)
,

with
f :=

(
a3

(
a4

(
−(a5 + 2)z + 2a5 + z2 + 1

)
+ (z − 1)2(a5 − z)

)
− a4a5

)
.

Suppose that there exists z in this interval such that f vanishes for some 0 < a5 < a4 <

a3 < 1. Since f does not change sign, this can only occur if at this value of z we also have

∂a5f = ∂a4f = ∂a3f = 0 .

Now,
∂a4f = 2(−a5 + a3(−a5(−2 + z) + (−1 + z)2)) ,

∂a5f = 2(−a4 + a3(−a4(−2 + z) + (−1 + z)2)) .

The resultant of these two polynomials in z is

16(a3 − 1)2a2
3(a4 − a5)2 ,

which is strictly positive in the region of interest, hence gψψ is also strictly positive on
{ρ = 0, z ∈ (a1, a5)}.
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An alternative argument for positivity at ρ = 0 can be given as follows: Since all
terms in the numerator and denominator are non-negative one needs to check zeros of
the numerator and denominator. The analysis is done separately on each interval (ai, aj).
Before passing to the limit ρ = 0, for z > ai the functions ∆ij (as defined in (5.65), and
which necessarily vanish at ρ = 0) are replaced by positive functions ∆̂ij such that ∆ij =
ρ2∆̂ij . Furthermore we introduce µ1 = ρ2µ̂1 for z > a1. Substituting these expressions in
respective intervals of z, cancelling common factors and taking the limit ρ→ 0 one obtains
expressions for the numerator and the denominator of gψψ at ρ = 0. These expressions
turn out to be polynomials with all coefficients positive. For example for z ∈ (a4, a3) we
obtain the manifestly positive expressions

gψψ|ρ=0 =
(∆23 + ∆34)(∆̂51 + µ̂1)(1 + (∆23 + ∆34)µ̂1)2

µ̂1(1 + (∆23 + ∆34)µ̂1)2

and for z ∈ (a3, a2)

gψψ|ρ=0 =
∆23(∆̂34 + ∆̂45 + ∆̂51)(∆̂51 + µ̂1)(1 + ∆23µ̂1)2

µ̂1(∆̂45 + ∆̂51 + ∆̂34(1 + ∆23µ̂1)2 + ∆23(∆̂45 + ∆̂51)µ̂1(2 + ∆23(∆̂51 + µ̂1)))
.

It turns out that the denominator never vanishes and the numerator vanishes, as expected,
only at the axis of rotation of ∂ψ (z ≥ a2).

5.8.4 Stable causality

Using (A.1),
g(∇t,∇t) = gtt = −

gψψ
Gy

,

we conclude from what has been said so far and from table 1 that t is a time-function on

{ρ > 0} ∪ {ρ = 0, z 6∈ [a5, a4] ∪ [a3, a2]} , (5.66)

except perhaps for ρ = 0, z > a2. There we find

lim
ρ→0

gψψ
ρ2

=
(z − a1)

2(z − a2)(z − a5)
,

which ends the proof of stable causality of the region (5.66) when c2 = 0. (The blow-up at
z = a2 appears surprising at first sight, but turns out to be compatible with a smooth axis
of rotation, as clarified in section 5.6; compare also (5.30).)

A The metric

A.1 The metric coefficients

The Black Saturn line element [4] reads

ds2 = −Hy

Hx

[
dt+

(ωψ
Hy

+ q
)
dψ
]2

+Hx

{
k2 P

(
dρ2 + dz2

)
+
Gy
Hy

dψ2 +
Gx
Hx

dϕ2

}
,
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where k, q are real constants. The contravariant components of the metric tensor are
gψψ = Hy/(HxGy), gρρ = gzz = 1/gρρ, gϕϕ = 1/gϕϕ and

gtt = −Hx

Hy
+

Hy

HxGy

(
ωψ
Hy

+ q

)2

= −
gψψ
Gy

, gtψ = − Hy

HxGy

(
ωψ
Hy

+ q

)
. (A.1)

If we let
µi :=

√
ρ2 + (z − ai)2 − (z − ai) ,

where the ai’s are real constants, then

Gx =
ρ2µ4

µ3 µ5
, (A.2)

P = (µ3 µ4 + ρ2)2(µ1 µ5 + ρ2)(µ4 µ5 + ρ2) , (A.3)

Hx = F−1

[
M0 + c21M1 + c22M2 + c1 c2M3 + c21c

2
2M4

]
, (A.4)

Hy = F−1 µ3

µ4

[
M0

µ1

µ2
− c21M1

ρ2

µ1 µ2
− c22M2

µ1 µ2

ρ2
+ c1 c2M3 + c21c

2
2M4

µ2

µ1

]
, (A.5)

where c1 and c2 are real constants, with

M0 = µ2 µ
2
5(µ1 − µ3)2(µ2 − µ4)2(ρ2 + µ1 µ2)2(ρ2 + µ1 µ4)2(ρ2 + µ2 µ3)2 , (A.6)

M1 = µ2
1 µ2 µ3 µ4 µ5 ρ

2 (µ1 − µ2)2(µ2 − µ4)2(µ1 − µ5)2(ρ2 + µ2 µ3)2 , (A.7)

M2 = µ2 µ3 µ4 µ5 ρ
2 (µ1 − µ2)2(µ1 − µ3)2(ρ2 + µ1 µ4)2(ρ2 + µ2 µ5)2 , (A.8)

M3 = 2µ1µ2 µ3 µ4 µ5 (µ1 − µ3)(µ1 − µ5)(µ2 − µ4)(ρ2 + µ2
1)(ρ2 + µ2

2)

×(ρ2 + µ1 µ4)(ρ2 + µ2 µ3)(ρ2 + µ2 µ5) , (A.9)

M4 = µ2
1 µ2 µ

2
3 µ

2
4 (µ1 − µ5)2(ρ2 + µ1 µ2)2(ρ2 + µ2 µ5)2 , (A.10)

and

F = µ1 µ5 (µ1 − µ3)2(µ2 − µ4)2(ρ2 + µ1 µ3)(ρ2 + µ2 µ3)(ρ2 + µ1 µ4)

×(ρ2 + µ2 µ4)(ρ2 + µ2 µ5)(ρ2 + µ3 µ5)
5∏
i=1

(ρ2 + µ2
i ) . (A.11)

Furthermore,

Gy =
µ3 µ5

µ4
, (A.12)

and the off-diagonal part of the metric is governed by

ωψ = 2
c1R1

√
M0M1 − c2R2

√
M0M2 + c21 c2R2

√
M1M4 − c1 c22R1

√
M2M4

F
√
Gx

.

(A.13)

Here Ri =
√
ρ2 + (z − ai)2. We note that the square roots in (A.13) are an artifact, in the

sense that the functions
M0M1

Gx
,

M0M2

Gx
,

M1M4

Gx
, and

M2M4

Gx
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can be checked to be complete squares, which implies that their square roots can be rewrit-
ten as rational functions of the µi’s, ρ2, and of the free constants appearing in the metric.

The determinant of the metric reads

det gµν = −ρ2H2
xk

4P 2 . (A.14)

A.2 The parameters

Here we summarise the restrictions imposed in [4] on various parameters appearing in the
metric. The parameters ai are ordered as

a1 ≤ a5 ≤ a4 ≤ a3 ≤ a2 , (A.15)

but throughout this paper we assume that the inequalities are strict.
Boundedness of gtt near a1 leads either to c2 = 0 or to

c1 = ±

√
2(a3 − a1)(a4 − a1)

a5 − a1
. (A.16)

This last condition follows also from the requirement of boundedness of gψψ near a1 when
c2 = 0, and thus (A.16) needs to be imposed in all cases. A choice of orientation of ψ leads
to the plus sign.

From table 2, continuity of the metric at {ρ = 0, z < a1} leads to the condition

k =
2(a1 − a3)(a2 − a4)

2(a1 − a3)(a2 − a4) + (a1 − a5)c1c2
, (A.17)

which can be checked to be finite when the value of c1c2 is inserted.
Asymptotic flatness requires

q =
2c2κ1

2κ1 − 2κ1κ2 + c1c2κ3
,

as well as

k = − 2κ1(−1 + κ2)√
(−2κ1(−1 + κ2) + c1c2κ3)2

,

where

κi :=
ai+2 − a1

a2 − a1
,

which can be checked to be consistent with (A.17).
A conical singularity on the rotation axes of ∂ϕ is avoided if

c2 =
√

2(a4 − a2)
±(a1 − a2)(a3 − a4) +

√
(a1 − a3)(a4 − a2)(a2 − a5)(a3 − a5)√

(a1 − a4)(a2 − a4)(a1 − a5)(a2 − a5)(a3 − a5)
.
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B Numerical evidence for stable causality

In this appendix we present numerical results that support the conjecture that gψψ is
positive away from points where ∂ψ vanishes. Regions where gψψ vanishes or becomes
negative contain closed causal curves. On the other hand, the conjecture implies stable
causality of the domain of outer communications, see section 5.8.4.

While our numerical analysis indicates very strongly that gψψ is never negative in the
region of parameters of interest, it should be recognized that the evidence that we provide
concerning null orbits of ∂ψ is less compelling.

The metric component gψψ is a complicated function of ρ, z and the five parameters
ai=1,...,0. This function is sufficiently complicated in the general case that there appears to
be little hope to prove non-negativity analytically. We gave a complete analytic solution
of the problem in section 5.8 only for c2 = 0. In general, we turn to numerical analysis.
The idea is to find an absolute minimum of gψψ.

The original space of this minimization problem is seven dimensional. One may use
translation symmetry of Black Saturn solution to reduce the dimension by one. We do this
via the choice a1 = 0. Next, choosing a5−a1 as a length unit leads us to a five dimensional
minimization problem. Our five variables are ρ, z, d45, d34, d23, where dij = ai − aj . All
of them are real and in addition ρ ≥ 0, dij > 0.

The minimization procedure starts at a random initial point and goes towards smaller
values of gψψ. For general ρ ≥ 0 we use an algorithm with gradient — the so-called
Fletcher-Reeves conjugate gradient algorithm. The limit ρ → 0 is non-trivial, therefore it
has to be studied separately. In this case, the values of the metric functions are given by
different formulas for different ranges of z coordinate. The expressions for the gradients are
huge and we did not succeed in compiling a C++ code with these definitions. Therefore,
for ρ = 0 we use the Simplex algorithm of Nelder and Mead. This algorithm does not
require gradients. Both algorithms are provided by the GNU Scientific Library [6].

The minimisation procedure stops when the computer has attained a local minimum
by comparing with values at nearby points, or when the minimizing sequence of points
reaches the boundary of the minimization region (coalescing ai’s). All local minima found
by the computer were located very near the axis ρ = 0, where the results were unreliable
because of the numerical errors arising from the divisions of two very small numbers, and
it is tempting to conjecture that gψψ has non-vanishing gradient with respect to (ρ, z, ai)
away from the axis, but we have not able to prove that.

The numerical artefacts, just described, were filtered out as follows: Each value of gψψ
at a local minimum, as claimed by the C++ minimisation procedure was recalculated in
Mathematica. If the relative error was bigger than 10−6, then the point was classified as
unreliable and excluded from the data. In particular all points at which C++ claimed a
negative value of gψψ were found to be unreliable according to this criterion.

Figure 4 illustrates a roughly quadratic lower bound on

gψψ|ρ≥0,z∈[−zmax ,zmax ] ,

with a slope depending on the collection (zmax , dij). In figure 5 one observes a linear lower
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Figure 4. The values of gψψ as a function of ρ at the end of the minimization procedure; this occurs
either at local minima, or at points where the minimizing sequence leads to coalescing ai’s. The
three samples a), b), c) are presented with different grey intensity (from low to high, respectively).
The initial parameters (z, dij) for the minimization procedure were randomly chosen, uniformly
distributed in the intervals a) z ∈ (−150, 301), dij ∈ (0, 50), b) z ∈ (−150, 226), dij ∈ (0, 25), c)
z ∈ (−150, 166), dij ∈ (0, 5). For each sample, the minimum of gψψ is proportional to ρ2.

Figure 5. The values of gψψ for ρ = 0 at the end of the minimization procedure; this occurs
at points where the minimizing sequence leads to coalescing ai’s. The initial parameters (z, dij)
for the minimization procedure were randomly chosen, uniformly distributed in the intervals z ∈
(−150, 301), dij ∈ (0, 50).

bound on gψψ|ρ=0 for z < a1, with a slope approximatively equal to −2 with our choice of
scale a5 − a1 = 1.
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The numerical results presented in this section support the hypothesis that gψψ is
never negative in the region of parameters of interest, vanishing only on the axis of rotation
{ρ = 0 , z ≥ a2}.
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