1,088 research outputs found

    Persistent Skyrmion Lattice of Noninteracting Electrons with Spin-Orbit Coupling

    Full text link
    A persistent spin helix (PSH) is a robust helical spin-density pattern arising in disordered 2D electron gases with Rashba α\alpha and Dresselhaus ÎČ\beta spin-orbit (SO) tuned couplings, i.e., α=±ÎČ\alpha=\pm\beta. Here we investigate the emergence of a Persistent Skyrmion Lattice (PSL) resulting from the coherent superposition of PSHs along orthogonal directions -- crossed PSHs -- in wells with two occupied subbands Îœ=1,2\nu=1,2. For realistic GaAs wells we show that the Rashba αΜ\alpha_\nu and Dresselhaus ÎČÎœ\beta_\nu couplings can be simultaneously tuned to equal strengths but opposite signs, e.g., α1=ÎČ1\alpha_1= \beta_1 and α2=−ÎČ2\alpha_2=-\beta_2. In this regime and away from band anticrossings, our {\it non-interacting} electron gas sustains a topologically non-trivial skyrmion-lattice spin-density excitation, which inherits the robustness against spin-independent disorder and interactions from its underlying crossed PSHs. We find that the spin relaxation rate due to the interband SO coupling is comparable to that of the cubic Dresselhaus term as a mechanism of the PSL decay. Near anticrossings, the interband-induced spin mixing leads to unusual spin textures along the energy contours beyond those of the Rahsba-Dresselhaus bands. Our PSL opens up the unique possibility of observing topological phenomena, e.g., topological and skyrmion Hall effects, in ordinary GaAs wells with non-interacting electrons.Comment: 5 pages, 2 figures; changed the presentation and added supplemental material (17 pages, 1 figure

    Photoluminescence in yttria-stabilized zirconia of aging effects

    Get PDF

    Restriction fragment mass polymorphism (RFMP) analysis based on MALDI-TOF mass spectrometry for detecting antiretroviral resistance in HIV-1 infected patients

    Get PDF
    AbstractViral genotype assessment is important for effective clinical management of HIV-1 infected patients, especially when access and/or adherence to antiretroviral treatment is reduced. In this study, we describe development of a matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based viral genotyping assay, termed restriction fragment mass polymorphism (RFMP). This assay is suitable for sensitive, specific and high-throughput detection of multiple drug-resistant HIV-1 variants. One hundred serum samples from 60 HIV-1-infected patients previously exposed to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs) were analysed for the presence of drug-resistant viruses using the RFMP and direct sequencing assays. Probit analysis predicted a detection limit of 223.02 copies/mL for the RFMP assay and 1268.11 copies/mL for the direct sequencing assays using HIV-1 RNA Positive Quality Control Series. The concordance rates between the RFMP and direct sequencing assays for the examined codons were 97% (K65R), 97% (T69Ins/D), 97% (L74VI), 97% (K103N), 96% (V106AM), 97% (Q151M), 97% (Y181C), 97% (M184VI) and 94% (T215YF) in the reverse transcriptase coding region, and 100% (D30N), 100% (M46I), 100% (G48V), 100% (I50V), 100% (I54LS), 99% (V82A), 99% (I84V) and 100% (L90M) in the protease coding region. Defined mixtures were consistently and accurately identified by RFMP at 5% relative concentration of mutant to wild-type virus while at 20% or greater by direct sequencing. The RFMP assay based on mass spectrometry proved to be sensitive, accurate and reliable for monitoring the emergence and early detection of HIV-1 genotypic variants that lead to drug resistance

    Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND

    Get PDF
    We search for electron anti-neutrinos (Μ‟e\overline{\nu}_e) from long and short-duration gamma-ray bursts~(GRBs) using data taken by the KamLAND detector from August 2002 to June 2013. No statistically significant excess over the background level is found. We place the tightest upper limits on Μ‟e\overline{\nu}_e fluence from GRBs below 7 MeV and place first constraints on the relation between Μ‟e\overline{\nu}_e luminosity and effective temperature.Comment: 16 pages and 5 figure

    APRIL: Active Preference-learning based Reinforcement Learning

    Get PDF
    This paper focuses on reinforcement learning (RL) with limited prior knowledge. In the domain of swarm robotics for instance, the expert can hardly design a reward function or demonstrate the target behavior, forbidding the use of both standard RL and inverse reinforcement learning. Although with a limited expertise, the human expert is still often able to emit preferences and rank the agent demonstrations. Earlier work has presented an iterative preference-based RL framework: expert preferences are exploited to learn an approximate policy return, thus enabling the agent to achieve direct policy search. Iteratively, the agent selects a new candidate policy and demonstrates it; the expert ranks the new demonstration comparatively to the previous best one; the expert's ranking feedback enables the agent to refine the approximate policy return, and the process is iterated. In this paper, preference-based reinforcement learning is combined with active ranking in order to decrease the number of ranking queries to the expert needed to yield a satisfactory policy. Experiments on the mountain car and the cancer treatment testbeds witness that a couple of dozen rankings enable to learn a competent policy

    Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

    Get PDF
    To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training

    KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars

    Full text link
    In the late stages of nuclear burning for massive stars (M>8~M_{\sun}), the production of neutrino-antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25~M_{\sun} at a distance less than 690~pc with 3σ\sigma significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.Comment: 19 pages, 6 figures, 1 tabl
    • 

    corecore