2,713 research outputs found

    Player agency in interactive narrative: audience, actor & author

    Get PDF
    The question motivating this review paper is, how can computer-based interactive narrative be used as a constructivist learn- ing activity? The paper proposes that player agency can be used to link interactive narrative to learner agency in constructivist theory, and to classify approaches to interactive narrative. The traditional question driving research in interactive narrative is, ‘how can an in- teractive narrative deal with a high degree of player agency, while maintaining a coherent and well-formed narrative?’ This question derives from an Aristotelian approach to interactive narrative that, as the question shows, is inherently antagonistic to player agency. Within this approach, player agency must be restricted and manip- ulated to maintain the narrative. Two alternative approaches based on Brecht’s Epic Theatre and Boal’s Theatre of the Oppressed are reviewed. If a Boalian approach to interactive narrative is taken the conflict between narrative and player agency dissolves. The question that emerges from this approach is quite different from the traditional question above, and presents a more useful approach to applying in- teractive narrative as a constructivist learning activity

    Effect of heat treatment and aging on the mechanical loss and strength of hydroxide catalysis bonds between fused silica samples

    Get PDF
    Hydroxide catalysis bonds are used in the aLIGO gravitational wave detectors and are an essential technology within the mirror suspensions which allowed for detector sensitivities to be reached that enabled the first direct detections of gravitational waves. Methods aimed at further improving hydroxide catalysis bonds for future upgrades to these detectors, in order to increase detection rates and the number of detectable sources, are explored. Also, the effect on the bonds of an aLIGO suspension construction procedure involving heat, the fibre welding process, is investigated. Here we show that thermal treatments can be beneficial to improving some of the bond properties important to the mirror suspensions in interferometric gravitational wave detectors. It was found that heat treating bonds at 150\,^\circC increases bond strength by a factor of approximately 1.5 and a combination of bond ageing and heat treatment of the optics at 150\,\circC reduces the mechanical loss of a bond from 0.10 to 0.05. It is also shown that current construction procedures do not reduce bond strength

    Lagrangian Framework for Systems Composed of High-Loss and Lossless Components

    Full text link
    Using a Lagrangian mechanics approach, we construct a framework to study the dissipative properties of systems composed of two components one of which is highly lossy and the other is lossless. We have shown in our previous work that for such a composite system the modes split into two distinct classes, high-loss and low-loss, according to their dissipative behavior. A principal result of this paper is that for any such dissipative Lagrangian system, with losses accounted by a Rayleigh dissipative function, a rather universal phenomenon occurs, namely, selective overdamping: The high-loss modes are all overdamped, i.e., non-oscillatory, as are an equal number of low-loss modes, but the rest of the low-loss modes remain oscillatory each with an extremely high quality factor that actually increases as the loss of the lossy component increases. We prove this result using a new time dynamical characterization of overdamping in terms of a virial theorem for dissipative systems and the breaking of an equipartition of energy.Comment: 53 pages, 1 figure; Revision of our original manuscript to incorporate suggestions from refere

    Experimental observation of the dual behavior of PT{\cal PT}-symmetric scattering

    Full text link
    We investigate experimentally parity-time (PT{\cal PT}) symmetric scattering using LRCLRC circuits in an inductively coupled PT{\cal PT}- symmetric pair connected to transmission line leads. In the single-lead case, the PT{\cal PT}-symmetric circuit acts as a simple dual device - an amplifier or an absorber depending on the orientation of the lead. When a second lead is attached, the system exhibits unidirectional transparency for some characteristic frequencies. This non-reciprocal behavior is a consequence of generalized (non-unitary) conservation relations satisfied by the scattering matrix.Comment: 5 pages, 4 figure

    Dark energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5

    Full text link
    We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark energy equation of state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. We implement an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-z galaxies. Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae only; the parameter uncertainties are underestimated by 10%. The weak lensing field-to-field variance pointings is 5%-15% higher than that predicted from N-body simulations. We find no bias of the lensing signal at high redshift, within the framework of a simple model. Assuming a systematic underestimation of the lensing signal at high redshift, the normalisation sigma_8 increases by up to 8%. Combining all three probes we obtain -0.10<1+w<0.06 at 68% confidence (-0.18<1+w<0.12 at 95%), including systematic errors. Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15sigma. [Abridged]Comment: 14 pages, 10 figures. Revised version, matches the one to be published in A&A. Modifications have been made corresponding to the referee's suggestions, including reordering of some section

    Spinal NKCC1 blockade inhibits TRPV1-dependent referred allodynia

    Get PDF
    Background The Na+, K+, 2Cl- type I cotransporter (NKCC1) and TRPV1 receptors, at the level of the dorsal horn, have been implicated in mediating allodynia in response to an inflammatory insult. The NKCC1 cotransporter regulates intracellular [Cl-] and thus the magnitude and polarity of GABAA receptor responses in neurons. TRPV1 receptors transduce diverse chemical and natural stimuli in nociceptors and are critical for inflammatory hyperalgesia.Results Here we have tested the role of spinal NKCC1 cotransporters and TRPV1 receptors in referred allodynia in a model of visceral hyperalgesia in mice. Intrathecal (IT) injection of the NKCC1 inhibitor bumetanide (BUM, 1 nmol) inhibited referred, abdominal allodynia evoked by an intracolonic capsaicin injection. BUM was effective when injected IT either before or up to 4 hrs after the establishment of referred allodynia. The TRPV1 antagonist AMG 9810 (1 nmol) also inhibited referred allodynia in this model suggesting the involvement of an endogenous TRPV1 agonist in the dorsal horn in referred allodynia. In support of this suggestion, the endovanilloid TRPV1 agonist, narachidonoyl- dopamine (NADA, 1 or 10 nmol, IT) evoked stroking allodynia in the hindpaw that was blocked by co-treatment with AMG 9810 (1 nmol). The TRPV1-dependent stroking allodynia caused by NADA appeared to be functionally linked to NKCC1 because BUM (1 nmol) also inhibited NADA-evoked stroking allodynia.Conclusion Our findings indicate that spinal NKCC1 and TRPV1 are critical for referred allodynia mediated by a painful visceral stimulus. Moreover, they suggest that endogenous TRPV1 agonists, released in the CNS in painful conditions, might stimulate TRPV1 receptors on primary afferents that, in turn, play a role in increasing NKCC1 activity leading to allodynia.This work was supported by the National Institutes for Neurological Disorders and Stroke (NINDS, DA19959, to TJP), the American Pain Society (to TJP), the Spanish Secretaria de Estado de Educacion y Universidades: Formacion de Profesorado Universitario Grant (to JME), the Canadian Foundation for Innovation (CFI, to FC), the Canadian Institutes of Health Research (CIHR, to FC) and the Fonds de la recherche en santé du Québec (FRSQ, to FC)

    Toward a complete theory for predicting inclusive deuteron breakup away from stability

    Full text link
    We present an account of the current status of the theoretical treatment of inclusive (d,p)(d,p) reactions in the breakup-fusion formalism, pointing to some applications and making the connection with current experimental capabilities. Three independent implementations of the reaction formalism have been recently developed, making use of different numerical strategies. The codes also originally relied on two different but equivalent representations, namely the prior (Udagawa-Tamura, UT) and the post (Ichimura-Austern-Vincent, IAV) representations. The different implementations have been benchmarked, and then applied to the Ca isotopic chain. The neutron-Ca propagator is described in the Dispersive Optical Model (DOM) framework, and the interplay between elastic breakup (EB) and non-elastic breakup (NEB) is studied for three Ca isotopes at two different bombarding energies. The accuracy of the description of different reaction observables is assessed by comparing with experimental data of (d,p)(d,p) on 40,48^{40,48}Ca. We discuss the predictions of the model for the extreme case of an isotope (60^{60}Ca) currently unavailable experimentally, though possibly available in future facilities (nominally within production reach at FRIB). We explore the use of (d,p)(d,p) reactions as surrogates for (n,Îł)(n,\gamma) processes, by using the formalism to describe the compound nucleus formation in a (d,pÎł)(d,p\gamma) reaction as a function of excitation energy, spin, and parity. The subsequent decay is then computed within a Hauser-Feshbach formalism. Comparisons between the (d,pÎł)(d,p\gamma) and (n,Îł)(n,\gamma) induced gamma decay spectra are discussed to inform efforts to infer neutron captures from (d,pÎł)(d,p\gamma) reactions. Finally, we identify areas of opportunity for future developments, and discuss a possible path toward a predictive reaction theory
    • 

    corecore