228 research outputs found

    Spaced training enhances memory and prefrontal ensemble stability in mice

    Get PDF
    It is commonly acknowledged that memory is substantially improved when learning is distributed over time, an effect called the "spacing effect". So far it has not been studied how spaced learning affects the neuronal ensembles presumably underlying memory. In the present study, we investigate whether trial spacing increases the stability or size of neuronal ensembles. Mice were trained in the "everyday memory"task, an appetitive, naturalistic, delayed matching-to-place task. Spacing trials by 60 min produced more robust memories than training with shorter or longer intervals. c-Fos labeling and chemogenetic inactivation established the involvement of the dorsomedial prefrontal cortex (dmPFC) in successful memory storage. In vivo calcium imaging of excitatory dmPFC neurons revealed that longer trial spacing increased the similarity of the population activity pattern on subsequent encoding trials and upon retrieval. Conversely, trial spacing did not affect the size of the total neuronal ensemble or the size of subpopulations dedicated to specific task-related behaviors and events. Thus, spaced learning promotes reactivation of prefrontal neuronal ensembles processing episodic-like memories

    Solving condensed-matter ground-state problems by semidefinite relaxations

    Get PDF
    We present a new generic approach to the condensed-matter ground-state problem which is complementary to variational techniques and works directly in the thermodynamic limit. Relaxing the ground-state problem, we obtain semidefinite programs (SDP). These can be solved efficiently, yielding strict lower bounds to the ground-state energy and approximations to the few-particle Green's functions. As the method is applicable for all particle statistics, it represents in particular a novel route for the study of strongly correlated fermionic and frustrated spin systems in D>1 spatial dimensions. It is demonstrated for the XXZ model and the Hubbard model of spinless fermions. The results are compared against exact solutions, quantum Monte Carlo, and Anderson bounds, showing the competitiveness of the SDP method.Comment: 8 pages, 3 figures; original title "Approaching condensed matter ground states from below"; improved numerics, added references; published version, including appendice

    Towards experimental quantum-field tomography with ultracold atoms

    Get PDF
    The experimental realization of large-scale many-body systems in atomic- optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one- dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems

    Optical Phonon Lasing in Semiconductor Double Quantum Dots

    Full text link
    We propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. We show that the DQD is weakly coupled to only two LO phonon modes that act as a natural cavity. The lasing occurs for pumping the DQD via electronic tunneling at rates much higher than the phonon decay rate, whereas an antibunching of phonon emission is observed in the opposite regime of slow tunneling. Both effects disappear with an effective thermalization induced by the Franck-Condon effect in a DQD fabricated in a carbon nanotube with a strong electron-phonon coupling.Comment: 8 pages, 4 figure

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
    • …
    corecore