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We present a generic approach to the condensed-matter ground-state problemwhich is complementary to

variational techniques and works directly in the thermodynamic limit. Relaxing the ground-state problem,

we obtain semidefinite programs (SDP). These can be solved efficiently, yielding strict lower bounds to

the ground-state energy and approximations to the few-particle Green’s functions. As the method is

applicable for all particle statistics, it represents, in particular, a novel route for the study of strongly

correlated fermionic and frustrated spin systems inD> 1 spatial dimensions. It is demonstrated for theXXZ

model and the Hubbard model of spinless fermions. The results are compared against exact solutions,

quantumMonte Carlo calculations, andAnderson bounds, showing the competitiveness of the SDPmethod.
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Introduction.—Prominent simulation techniques for
condensed-matter systems are sampling algorithms like
the quantum Monte Carlo (QMC) method [1–4] and varia-
tional algorithms like the density-matrix renormalization
group [5,6], other tensor-network-state approaches [7–10],
or variational Monte Carlo methods [11–14]. For a number
of interesting classes of systems, like frustrated or fermi-
onic systems in D> 1 spatial dimensions, the powerful
QMC technique is inefficient, due to the sign problem
[15–17]. Such systems are then often studied with varia-
tional techniques by minimizing the energy within a cer-
tain class of states. The energy expectation value of the
obtained state is necessarily an upper bound to the exact
ground-state energy.

In this Letter, a complementary approach is presented.
By relaxations of the ground-state problem, we obtain
semidefinite programs (SDP) [18,19], which can be solved
efficiently on classical computers. This yields lower
bounds to the ground-state energy and corresponding
approximations to few-particle Green’s functions. The ob-
tained Green’s functions allow, e.g., for the study of phase
diagrams. As the presented SDPmethod works irrespective
of the particle statistics, it provides, in particular, a novel
route for the study of strongly correlated fermionic and
frustrated spin systems for D> 1. The method can also be
used to judge the quality of variational algorithms in situ-
ations where exact or QMC results are not available. This is
especially important for variational Monte Carlo calcula-
tions [13,14] and the recently developed variational tensor-
network-state techniques for fermions in D> 1 [20–24].

The idea is to specify the system by its equal-time

k-point Green’s functions GðkÞ. For systems of fermions,
bosons, or hard-core bosons (being equivalent to
spins-1=2) in a normalized state �̂, they are defined as
the correlation functions

GðkÞ
i;j

:¼ Tr ð�̂âi1 . . . âim âyjn . . . âyj1Þ; k ¼ mþ n; (1)

for ladder operators âi and some single-particle basis states

jii [25]. The energy expectation value E ¼ Tr �̂ Ĥ is a
function of the (few-particle) Green’s functions, i.e., E ¼
EðGÞ. The exact ground-state energy is obtained by mini-
mization among all representable Green’s functions G,
i.e., those for which a density operator �̂ exists, such
that Eq. (1) is obeyed. However, to determine whether
a given Green’s function G is representable turns out
to be a computationally hard problem, the famous
N-representability problem [26–29], which is quantum
Merlin Arthur (QMA) complete [30]. Nevertheless, an
efficient minimization of E is possible if we relax the
constraints on the Green’s function, then, yielding not the
exact ground-state energy but a lower bound and not
the exact ground-state Green’s function but an approxima-
tion. Note that minimizing EðGÞ without any constraints is
doomed to fail, as the energy is linear in G. Manageable
constraints on G can be constructed by imposing the pos-
itivity of the expectation values of certain positive-definite
observables, an example being the particle density operator

âyi âi. Such an approach for fermionicGð1Þ andGð2Þ has been
successfully applied to finite systems in quantum chemis-
try; see, e.g., Ref. [31] and references therein.
Here, we present a systematic method for the construc-

tion and solution of relaxed ground-state problems for
condensed-matter systems. As in the approach known
from quantum chemistry, our constraints enforce positive

expectation values for operators of the form ĈyĈ with
respect to the Green’s functions G. More generally than

before, we (a) choose the constraint operators Ĉ to be
arbitrary polynomials of degree � K 2 N in the ladder
operators, which (b) act on suitably chosen subsets of the
lattice. This makes it possible to address large systems and
to control the precision and the computation cost. We
(c) exploit the translation invariance of the condensed-
matter systems to (d) work effectively with an infinite
number of degrees of freedom and describe the systems
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directly in the thermodynamic limit. The method yields

coupled constraints for Gð1Þ; . . . ; Gð2KÞ such that the energy
optimization problem attains the form of an SDP. On the
basis of the bipolar theorem [32], we further elucidate the
mathematical background of the method and further pos-
sible reductions to the number of constraints.

An alternative method for calculating lower bounds to
the ground-state energy is due to Anderson. Anderson
bounds [33,34] are obtained by splitting the Hamiltonian

Ĥ into a sum of subsystem Hamiltonians Ĥm that are
accessible by exact diagonalization. The Anderson bound
for the ground-state energy E0 is then given by the sum of

the ground-state energies E0
m of the Ĥm,

Ĥ ¼ X

m

Ĥm ) E0 � X

m

E0
m: (2)

The computation cost for this bound scales exponentially

in the sizes of the spatial supports of the operators Ĥm [35].
A generalization of this approach to finite temperatures is
presented in Ref. [36].

In contrast, the computation cost for the SDP method
scales only polynomially in the support of the constraint
operators. In the prominent systems that we studied with
moderate computer resources, the SDP method outper-
forms the Anderson bound substantially. The SDP method
has the additional advantage of giving access to the
Green’s functions, which can be used to study phase dia-
grams, etc.

Ground-state problem.—The following description ap-
plies to lattice systems of fermions, bosons, and hard-core
bosons—each corresponding to a certain algebra for the

ladder operators fâi; âyi g [25]. Spins-1=2 can be treated by
mapping them to hard-core bosons via the identifications

âi ¼ Ŝ�i , â
y
i ¼ Ŝþi , and Ŝzi ¼ âyi âi � 1

2 . The generalization

to higher spins is straightforward. For each subset� of the
single-particle modes fjiig, let Ak

� denote the operator

basis of normal-ordered monomials of degree k in the
ladder operators for subsystem �,

Ak
�
:¼ fâi1 . . . âim âyimþ1

. . . âyik j0 � m � k; i‘ 2 �g: (3)

Each density operator �̂ corresponds to a representable
Green’s function G, with its k-point component given by

G ðkÞ
�̂

:¼ Tr�̂ �̂ for �̂ 2 Ak
�: (4)

For the moment, let us choose � to be the full system.

Every linear operator B̂ on the Hilbert space can be ex-

panded in the basis A :¼ S
kA

k as B̂ ¼ P
�̂2AB�̂�̂. Its

expectation value with respect to a state �̂ is then

Tr �̂ B̂ ¼ X

�̂2A

G�̂B�̂ ¼: G½B̂�; (5)

whereG is the Green’s function of �̂. In this sense, Green’s
functions are linear functionals on the operators.

For a Hamiltonian Ĥ, the ground-state problem reads

E0 ¼ min
�̂2S

Tr�̂ Ĥ ¼ min
G2R

G½Ĥ�; (6)

where S denotes the set of all density operators and R
denotes the set of all representable Green’s functions,

R :¼ fGj9�̂ 2 S: G�̂ ¼ Tr�̂ �̂ 8�̂2Ag
¼ fGjG½Id� ¼ 1;G�̂y ¼ G�

�̂;G½B̂� � 0 8B̂�0g:
(7)

This equality follows from the fact that the only constraints
on a valid density operator �̂ are Tr�̂ ¼ 1, �̂ ¼ �̂y, and its
positivity �̂�0, which is equivalent to requiring Tr�̂B̂�0

for all positive-semidefinite operators B̂ � 0.
Variational methods proceed from Eq. (6) by choosing

some accessible subset of S. Each variational state from
such a subset yields an upper bound to the ground-state
energy E0. In contrast, for the SDP method, described in
the following, one chooses an accessible superset F of the
set R of representable Green’s functions, i.e., relaxes the
constraints. Minimizing the energy in such a superset
yields a lower bound to E0. A decisive feature of the
SDP method is that the minimum energies for the chosen
supersets F can be found certifiably.
SDP method.—Solving the ground-state problem (6) in

general is known to be a computationally hard problem; it is
QMA-complete [37]. Similarly, determining whether given
Green’s functions are representable, i.e., elements of R in
Eq. (7), is also a QMA-complete problem [30]. A straight-
forward way to relax the—apparently too demanding—
constraints represented byR is to require the Green’s func-

tionalG½B̂� to be non-negative, not for all B̂ � 0 but only for

operators B̂ of the form B̂ ¼ ĈyĈwith constraint operators

Ĉ from some suitable set C. Minimizing the energy G½Ĥ�
with respect to Green’s functions G from the set

FC :¼fGjG½Id�¼1;G�̂y ¼G�
�̂;G½ĈyĈ��08Ĉ2Cg (8)

yields a lower bound to the ground-state energy (6),

E0 � min
G2FC

G½Ĥ� � min
G2FC

X

�̂

G�̂H�̂; (9)

as R � FC. Imposing more and more constraints by en-
larging the operator set C, the bound approaches E0 and the
optimal G approaches the ground-state Green’s function.
Determining the optimum in Eq. (9) is a semidefinite pro-

gramming problem for the variables G�̂, as G½Ĥ� �P
�̂G�̂H�̂ is linear in G, and the constraints G½ĈyĈ� �

0 8 Ĉ 2 C can be written in the form
X

�̂

G�̂M�̂ � 0; (10)

where the Hermitian matrices M�̂ are completely
determined by the underlying algebra of the ladder
operators âi and the choice for the constraint operator
set C. Equations (9) and (10) correspond to a standard
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form for an SDP [18,19,35]. Equation (10) results from

expanding the constraint operators in the basis A, Ĉ ¼P
�̂C�̂�̂. This yields the constraints in the formP
�̂0�̂00C�

�̂0G½ð�̂0Þy�̂00�C�̂00 � 0 8C. Expanding the opera-

tors ð�̂0Þy�̂00 in the operator basis A (by bringing them
into normal-ordered form) and usingG½�̂� � G�̂ yields the
matrices ½M�̂��̂0;�̂00 and the constraints

X

�̂�̂0�̂00
G�̂C

�
�̂0 ½M�̂��̂0;�̂00C�̂00 ¼ X

�̂

G�̂C
yM�̂C � 0 8C;

from which Eq. (10) follows. See the Supplemental
Material [35] for explicit examples.

Thermodynamic limit and constraint operators.—Let us
now turn to the specific case of condensed-matter systems
in the thermodynamic limit. Let the Hamiltonian be

translation-invariant Ĥ ¼ P
rT rðĥÞwith finite-range inter-

action terms ĥ and the lattice translation operator T r. We

denote the spatial support of the �-point terms in ĥ by ��.

Because of the translation invariance of Ĥ, we can restrict
ourselves to translation-invariant density matrices and
Green’s functions. A constraint operator set can be con-
structed by choosing, for each operator degree k, a sub-
system �k of the full lattice such that

�k0 � �k 8k0>k and �� � �d�=2e 8�: (11)

Every such choice of subsystems and the corresponding set
of constraint operators

C� :¼ spanA� with A� :¼ [

k

Ak
�k

(12)

defines with Eq. (8) a set FC� 	 R of Green’s functions.

The number of Green’s function elements G�̂ occurring as
degrees of freedom in the SDP is then given by the size
jA�j of the operator basis. We always choose some K so
that �k ¼ ; 8k>K. Enlarging the subsystems �k system-
atically improves the solution of Eq. (9) and increases the
computation cost polynomially. For given model and com-
puter resources, the optimal choice for the subsystems �k

depends on the position in the phase diagram.
Symmetries.—Hamiltonian symmetries, like translation

or rotation invariance, imply that several Green’s function
elements G�̂ can be chosen to be identical (e.g., Gâxâ

y
y
�

Gâ0â
y
y-x

8xy) and it is sufficient to use in the SDP only one

representative for each of the corresponding equivalence
classes. Further, several Green’s function elements can be
zero (e.g., Gâxây ¼ 0 for particle-number-conserving mod-

els). A corresponding block structure in
P

�̂G�̂M�̂ can be
exploited to further reduce the computation cost.

Exemplary applications.—We demonstrate the capabil-
ities of our SDP approach with three example systems.

Let us first address the spin-1=2 XXZ model Ĥ ¼
P

hi;jiðŜxi Ŝxj þ Ŝyi Ŝ
y
j þ JzŜ

z
i Ŝ

z
jÞ in one spatial dimension

(1D). Using comparable (moderate) computer resources,
the energy bound obtained from the SDP method (9)

improves substantially on the Anderson bound (2); see
Fig. 1. Employing higher-order Green’s functions tends
to improve bounds at larger Jz. The obtained short-range
correlators coincide very well with the exact Bethe ansatz
results [38,39].
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FIG. 1 (color online). Lower bounds E to the ground-state
energy and approximations to correlators for the XXZ chain.
The Anderson bound (2) was calculated with clusters of 25 sites.
The subsystems �k for the SDP method (12) are chosen to be
clusters of contiguous sites with sizes L1, L2, L3, and L4 for
constraint operators of polynomial degree 1, 2, 3, and 4, respec-
tively, as specified in the legend (K ¼ 4). The Bethe ansatz
yields the exact ground-state energy E0 and short-range corre-
lators [38,39].

-0.2

-0.1

0.0

0.1

0.2

-1 -0.5  0  0.5  1  1.5  2

co
rr

el
at

or
s

Jz

<Sz
x,y S

z
x+1,y>

<Sx
x,y S

x
x+1,y>

<Sz
x,y S

z
x+2,y>

<Sx
x,y S

x
x+2,y>

-0.02

0.00

0.02

0.04

0.06

0.08

(E
-E

A
nd

er
so

n)
/N

·
SDP Lk=16, 5, 3, 2
SDP Lk=16, 5, 0, 0
SDP Lk=32, 4, 0, 0
SDP Lk=16, 4, 0, 0

-1  0  1

-1

-0.8

-0.6

-0.4

E
/N

QMC 16x16
Anderson 5x5

FIG. 2 (color online). Lower energy bounds and correlators for
the 2D XXZ model, complemented by QMC data calculated for
a square lattice of 16
 16 sites with periodic boundary con-
ditions and inverse temperature � ¼ 96. The QMC energies for
Jz ¼ 0; 1 coincide with earlier results (r) from Refs. [43,44]. As
SDP constraint subsystems �k [Eq. (12)], we chose Lk 
 Lk

squares with K ¼ 4 and L1, L2, L3, and L4, as specified in the
legend.
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Let us now consider the spin-1=2XXZmodel on a square

lattice. With the identifications âi ¼ Ŝ�i , â
y
i ¼ Ŝþi , and

Ŝzi ¼ âyi âi � 1
2 , it maps to a model of interacting hard-

core bosons obeying the algebra âiâ
y
j � ð�1Þ�ij âyi âj ¼

�ij. As displayed in Fig. 2, the SDP method yields much

better lower bounds to the ground-state energy than the
Anderson bound. As there is no exact solution available,
we also simulated the model with QMC calculations based
on the stochastic series expansion with directed loops [3].
It is again established that the SDP method gives access to
the correlation functions.

Finally, Fig. 3 shows results of the SDP method for

the 2D t� V Hubbard model of spinless fermions Ĥ ¼
� 1

2

P
hi;jiðâyi âj þ H:c:Þ þ V

P
hi;jiðn̂i � 1

2Þðn̂j � 1
2Þ on a

square lattice. In this case, except for V ¼ 0, no exact
results are available. The QMC approach is in this case
hampered by the sign problem [15–17]. It is hence ineffi-
cient and only applicable for small system sizes. The exact
diagonalization results for small lattices show strong finite-
size effects. The SDP method, however, is applicable just
as well as for the other models, outperforms the Anderson
bound, and reproduces the exact result for V ¼ 0. Hence,
we have a completely new and promising route to easily
and controlledly study frustrated magnets and fermionic
systems inD � 2, which theorists have laboriously tried to
address for decades while being confronted with big meth-
odological hurdles. Note that the SDP method employing
the full single- and two-particle Green’s functions, as
developed in the context of quantum chemistry, has been
applied to finite Hubbard chains of up to 14 sites [40–42].

Bipolar theorem.—Often, one is only interested in the
single- and two-particle Green’s functions. However, in the
presented SDP approach, we also introduce higher Green’s
functions to improve the approximation. On the basis of the
bipolar theorem, one can understand that such higher
Green’s functions represent slack variables. The set of
representable ðk � PÞ-point Green’s functions

~R P :¼ fGj9�̂ 2 S: GðkÞ
�̂ ¼ Tr�̂ �̂ 8k�P;�̂2Akg

is convex, as G is linear in �̂ and S is convex. Giving up on
the (inessential) normalization of the Green’s functions,

the setRP :¼ f�GjG 2 ~RP; � 2 Rþg becomes a convex
cone. For a given scalar product, h�; �i, the bipolar theorem
[32] states that ðR�

PÞ� ¼ RP, where R�
P
:¼ fB̂jhB;Gi �

0 8G2RP
g is the polar cone of RP. With the choice

hB;Gi :¼ P
k

P
�̂2Ak GðkÞ

�̂ B�̂ � G½B̂�, the polar R�
P is

the convex cone of all positive-semidefinite operators
from BP :¼ span

S
P
k¼0 A

k. Because of the bipolar theo-

rem, RP is hence characterized by R�
P as

RP ¼ fGjG�̂y ¼ G�̂
� 8�̂;G½B̂� � 0 8B̂2BP;B̂�0g: (13)

So, to obtain (or approximate) the ðk � PÞ-point Green’s
functions, one needs to consider only ðk � PÞ-point opera-
tors B̂ � 0. In this sense, higher Green’s functions are slack
variables, which are only employed in order to bring the
ground-state problem into the form of an SDP; see Eqs. (9)

and (10). We showed how constraints G½B̂� � 0 can be

enforced in the SDP, for the case that B̂ ¼ ĈyĈ with

constraint operators Ĉ that are polynomials of degree

� P=2. However, there are also subspaces of operators Ĉ

of polynomial degree >P=2 such that G½ĈyĈ� can be
evaluated with the ðk � PÞ-point Green’s functions. They
can hence be taken into account without introducing higher
Green’s functions. A particularly simple space of such
operators for a particle-number-conserving system is given

by Ĉ ¼ P
iciâi1 . . . âim þ H:c:: For every odd m, G½ĈyĈ�

can be evaluated without requiring Gð2mÞ.
Conclusion.—We have presented an SDP method for

calculating lower bounds to the ground-state energy of
condensed-matter systems and approximations to the
ground-state Green’s functions. It can be used for arbitrary
particle statistics by employing the corresponding operator
algebra. Our generic considerations on the SDP method
carry over to quantum chemistry problems. An advantage
in condensed-matter applications is that translation invari-
ance and locality can be exploited to systematically bal-
ance the precision and the computation cost. Still, the idea
of restricting the set of constraint operators to a physically
motivated subset is also applicable to quantum chemistry
problems.
We thank J. Eisert for calling our attention to the calcu-

lation of energy bounds using SDP, P. Corboz, J. Eisert,
H. G. Evertz, D. A. Mazziotti, A. Sandvik, and M. Troyer
for helpful discussions, and A.M. Läuchli for kindly pro-
viding exact diagonalization data for Fig. 3.
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