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Towards experimental quantum-field tomography
with ultracold atoms
A. Steffens1, M. Friesdorf1, T. Langen2, B. Rauer2, T. Schweigler2, R. Hübener1, J. Schmiedmayer2,

C.A. Riofrı́o1 & J. Eisert1

The experimental realization of large-scale many-body systems in atomic-optical

architectures has seen immense progress in recent years, rendering full tomography tools for

state identification inefficient, especially for continuous systems. To work with these

emerging physical platforms, new technologies for state identification are required. Here we

present first steps towards efficient experimental quantum-field tomography. Our procedure

is based on the continuous analogues of matrix-product states, ubiquitous in condensed-

matter theory. These states naturally incorporate the locality present in realistic

physical settings and are thus prime candidates for describing the physics of locally

interacting quantum fields. To experimentally demonstrate the power of our procedure, we

quench a one-dimensional Bose gas by a transversal split and use our method for a partial

quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our

technique to play an important role in future studies of continuous quantum many-body

systems.
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C
omplex quantum systems with many degrees of freedom
can now be controlled with unprecedented precision,
giving rise to applications in quantum metrology1,

quantum information1,2 and quantum simulation3,4. This holds
true specifically for architectures based on trapped ions5 and
ultracold atoms3,6–8, where large system sizes can now routinely
be realized, while still maintaining control down to
the level of single constituents. In the light of this development,
the mindset has shifted when it comes to the assessment and
verification of preparations of quantum states. Traditionally,
experiments are being used as a vessel to test the validity of
theoretical models by comparing their predictions to specific
experimental output. With quantum experiments of many
degrees of freedom becoming significantly more accurate, an
attitude of ‘quantum engineering’ and quantum simulation is
taking over. Compared with the traditional mindset, one does not
compare the experimental data to predictions from theoretical
models, but rather uses the full capabilities of the experimental
setup as an investigative tool for the physical situation at hand.
Triggered by this development and driven by the goal to
maximize the information extracted from the experiment, the
standards in quantum system identification have substantially
risen. Quantum-state tomography9–11 fulfils this need for precise
and model-independent quantum-state identification. It asks the
question: given data, what is the unknown quantum state
compatible with those data? Maybe unsurprisingly, the interest
in the field of quantum system identification and quantum-state
tomography has exploded in recent years10–13.

For many degrees of freedom, unqualified quantum state
tomography must be inefficient in the system size, as exponen-
tially many numbers need to be specified. This problem has given
way to the insight that practically only the states found in
experiments need to be reconstructed, which form only a small
subset of the full Hilbert space14,15. Accordingly, more efficient
tomography tools9 have been developed, ranging from quantum
compressed sensing10 (for states of approximately low rank), over
permutation-invariant tomography, to matrix-product state
tomography11–13,16. These approaches are based on using the
right ‘data set’ having the appropriate ‘sparsity structure’ to
capture quantum many-body systems. For discrete systems,
matrix-product states efficiently capture the low-energy
behaviour of locally interacting models and a large body of
literature in the condensed-matter context backs up this intuition
of the ‘physical corner of Hilbert space’14,15,17.

In this work, we consider continuous systems, in which the
tomographic problem is aggravated due to the fact that, in
principle, infinitely many degrees of freedom need to be
reconstructed. On the basis of the notion of sparsity, we present
a novel quantum-field tomography procedure relying on the class
of continuous matrix-product states (cMPS)18,19. This approach
will allow us to give evidence that the state encountered in the
laboratory is well approximated by a representative of this class.

Results
Quantum-field tomography. We apply our procedure to non-
equilibrium experiments of a continuous quantum gas of one
species of bosonic particles whose correlation behaviour can be
captured by translation invariant states of the form

CQ;R

�� �
¼ Traux Pe

R L

0
dx Q� 1̂þR� ĉyðxÞð Þ

� �
Oj i: ð1Þ

Here ĉðxÞ, xA[0, L] are the canonical bosonic field operators, Oj i
is the vacuum state vector, Q, RACd� d are matrices acting on an
auxiliary d-dimensional space and completely parametrize the
state. L is the length of the closed physical system, P denotes

the path ordering operator and Traux traces out the auxiliary
space. The bond dimension d takes the same role as the bond
dimension for matrix-product states: Low entanglement states
are expected to be well approximated by cMPS of low bond
dimension; in turn, for suitably large d, every quantum-field state
can be approximated.

We employ our reconstruction procedure to perform quantum
state tomography for a one-dimensional (1D) system of ultracold
Bose gases, an architecture that provides one of the prime setups
for exploring the physics of interacting quantum fields6,20,21. The
experiment consists of a large 1D quasi-condensate that is
trapped using an atom chip22. To bring the system out of
equilibrium, a split transversal to the condensate direction is
performed. The subsequent out-of-equilibrium dynamics after the
quench leads to apparent equilibration, prethermalization and
thermalization6,23,24. In the middle of the trap, the system can be
well approximated by two parallel quantum fields that are
homogeneous and translationally invariant.

The experiment proceeds by performing a joint time-of-flight
measurement of the two quasi-condensates. Since the experimen-
tally measured images are single-shot measurements, repeating
the experiment many times with identical initial conditions allows
to extract the phase difference ŷx of the two quasi-condensates at
different longitudinal position x and construct higher order
correlation functions6,25. The phase correlation functions are
defined as

C nð Þ x1; . . . ; xnð Þ¼ Re ei ŷx1 � ŷx2 þ ŷx3 � ... þ ŷxn� 1 � ŷxnð Þ
D E

; ð2Þ

where ŷx are the measured phase differences and the angular
brackets denote the ensemble average (Methods section).

To capture these correlation function in terms of a cMPS, we
use a description in terms of effective field operators for the phase
difference

ĉy xð Þ ¼ n̂ xð Þ
1
2eŷx ð3Þ

where n̂ are density operators. As no density information could
be obtained from the experiment in its current form,
the expectation value of these operators remains unknown and
our work is a partial reconstruction of the state. However, the
obtained cMPS contains its full phase correlation behaviour.

Using this description, we can write an n-point phase
correlation functions as

C nð Þ x1; . . . ; xnð Þ¼ Re n̂ x1ð Þ�
1
2ĉy x1ð Þĉ x2ð Þn̂ x2ð Þ�

1
2 . . .

D E
:

ð4Þ
Since it is sufficient for performing the tomography procedure, we
will use the correlation information of the normal ordered subset
with x1rx2r?rxn of the even-order correlation functions. In
the cMPS language, assuming translation invariance and the
thermodynamic limit, this can be reformulated as

CðnÞ t1; . . . ; tn� 1ð Þ ¼

Xd2

fkjg¼1

rk1; ... ;kn� 1
elk1 t1 . . . elkn� 1 tn� 1

ð5Þ

with tk¼ xkþ 1� xk,

rk1; ... ;kn� 1
¼ M� 1

1;kn� 1
Mkn� 1;kn� 2

. . . M� 1
k2;k1

Mk1;1; ð6Þ

lk being the eigenvalues of the transfer matrix T, and M being

R
1
2 � R

� 1
2 in the diagonal basis of T (Methods section)16. The

reconstruction proceeds by first extracting the eigenvalues lk from
the two-point correlation function and in a second step, determining
a compatible M matrix26 from the four-point correlators.
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Data analysis. We find that a cMPS with d¼ 2, corresponding to
four reconstructed poles and a 4� 4 matrix M, matches the
data. This indicates that the correlation function has a simple
structure as one would expect from such local physical
interactions (specifically based on previously explored
descriptions in terms of a Luttinger liquid theory6).
More importantly, no previously known theoretical description
of the physical situation at hand is needed since the cMPS
ansatz can be applied to any locally interacting quantum field.
To estimate the performance of the reconstruction of the
four-point correlation function, we use the mean relative
deviation (Methods section), and find a small error of 1.4%,
which is of the same magnitude as the experimental errors6.

Approximating a correlation function can be done in many
ways and it is, a priori, not clear that one has truly
gained knowledge about the state. The advantage of the cMPS
ansatz is that the approximation performed is sufficient to
fully reconstruct the phase correlation behaviour of the cMPS.
We build trust in the reconstructed state by using it to
predict higher order correlation functions, which in turn can
be experimentally checked. This provides an excellent
benchmark for our procedure and allows us to estimate the
quality of our guess for the unknown experimental state.
Specifically, we obtain an error of 3.2% for the six-point
function (Fig. 1), estimated with bootstrapping techniques.
This shows that the reconstruction of the full correlation
behaviour of the state was successful, providing a proof-of-
principle application for efficient state tomography of interacting
many-body quantum fields.

We have performed our reconstruction of the six-point
correlator for different hold times after the quench and observe
that the fit quality drops substantially with increasing time
with mean relative deviations of 3.2%, 10.7% and 34.1% for
times t¼ 3, 7 and 23 ms, respectively (Fig. 2). There are several
possible explanations for this decrease in reconstruction quality.
While quantum-field tomography necessarily has to rely on a
finite-dimensional ‘data set’, it is clear that not all situations
can be captured equally well by the approach proposed here.
This method applies to states of low entanglement, a situation
expected to be present for ground states or states in
non-equilibrium following quenches for short times. It will
surely be difficult to capture highly entangled or thermal
states, which are expected to have a high description complexity,
with these tools26.

Discussion
The physics of sudden quenches in discrete settings is usually
connected to a linear entanglement growth with time15,23,27,
while for each time satisfying an area law in space15. Note that
while the continuous physical system at hand can be well
captured with a free Tomonaga–Luttinger liquid model28,29, the
states of the system can still be strongly entangled, in the sense
that entanglement entropies across any real-space cut of the
system are, in principle, arbitrarily large. It is precisely this spatial
entanglement that will surely influence the quality of tensor
network descriptions of the state and that is a key factor for the
quality of any cMPS reconstruction26. Since our cMPS
reconstruction with d¼ 2 is only well-suited for states with low
entanglement, a similar entanglement buildup for the performed
sudden quench of quantum fields would be a natural explanation.
Indeed, such light cone dynamics for the correlations of these
systems6,30,31 have recently been made explicit experimentally.
Such entanglement growth could conceptually be unveiled by
investigating how the fit quality changes when the bond
dimension is increased. Given the structure of the data set
(analysis contained in the Methods section) and the increase of
experimental errors with hold time, the exploration of this
observation lies outside the scope of this work, but is surely an
interesting topic for the near future.

Experimental imperfections or the remaining actual tempera-
ture could be other sources for the decrease in fit quality with
hold time, as they lead to a mixed state, thus impeding our
description in terms of pure states. Previous studies, however,
successfully described the system in terms of a pure state
Luttinger liquid, even for long evolution times31. Moreover, the
experimental data was taken in the middle of the trap, where,
initially, the assumption of translational invariance holds up to
excellent accuracy. For long hold times after the quench, however,
regions outside of the center of the trap will have an influence on
the behaviour of the system in the middle6, thus making the data
less translational invariant (Methods section).

The work presented here is surely a first step in the direction
of a larger programme, advocating a paradigm change in
the evaluation of experimental data from atomic-optical
architectures. Instead of comparing predictions of an assumed
theoretical model with data, one puts the data into the focus
of attention and attempts a reconstruction in the mindset of
quantum tomography. This, in particular, seem an important
development in the context of quantum simulators, which have
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Figure 1 | Projections of the measured and predicted six-point correlation function. We show projections of the relevant sections of the (a) experimental

and (b) predicted six-point function for a hold time after the quench of t¼ 3 ms. This image shows the volumetric elements of certain projections

of the high-dimensional six-point correlation function array and demonstrates a great overall agreement between experimental data and the predicted

correlation data. In c, the absolute difference between the experimental and the predicted data points for the projection C(4)(0, 2, x3, x4) is shown as a bar

plot, the statistical uncertainties of the data as a transparent mesh. More quantitatively, as a figure of merit for measuring the performance of the

reconstruction, we use the mean relative deviation over all indices belonging to the relevant simplex of the data with x1r x2 r � � �r x6 (Methods section)

and find a mean error of 2.5% and a maximum relative deviation of 9.1%.
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the potential to address questions on interacting quantum
systems that are inaccessible with classical means. While partial
information of the results of a quantum simulator can easily be
accessed, a full read-out necessarily corresponds to performing
quantum tomography where feasible tools are still lacking. The
present work offers a step forward and presents a novel tool to
obtain and build trust in the complete results of a quantum
simulation without having to include any information of the
underlying Hamiltonian of the system.

Methods
Experiment. A single specimen of an ultracold gas of 87Rb atoms is prepared using
evaporative cooling on an atom chip. The final temperature and the chemical
potential of the gas are both well below the first radially excited state of the
trapping potential, implementing a 1D bosonic system that is well approximated by
the Lieb–Liniger model. The systems contain several thousand atoms and spread
over sizes as large as 100 mm. A sudden global quench is realised by transversally
splitting the gas into two mutually coherent halves32, leading to an out-of-
equilibrium, approximately pure state. The setup in principle allows for different
splitting procedures, in particular an experimental scheme to test the Unruh effect
with a specially modelled split has recently been proposed33. Subsequently, this
non-equilibrium system is let to evolve in the trap for a variable hold time. Its
dynamical states are probed using matter wave interferometry in time-of-flight,
which enables the direct measurement of the local relative phase yx. Since the
experimentally measured images are single-shot measurements, repeating the
experiment many times with identical initial conditions allows to measure not only
the mean of the correlations, but also higher order correlation functions are
accessible6. The corresponding correlation functions are constructed by averaging
over B150 experimental realizations.

We are restricted to even-order correlation functions in the experiment. The
reason for this is the fact that many experimental realizations are needed to
construct the correlation functions. Each of these experimental realizations
provides us with a measurement of the relative phase yx¼f(x)þj. Here f is the
actual fluctuating phase that contains the interesting many-body physics and j is a
small global phase diffusion that is random in every experimental realization32.
This global phase diffusion results from small shot-to-shot fluctuations in the
electrical currents that create the trapping potential. These cause small random
imbalances of the double well, leading to random and unknown values for j. For
the even-order correlation functions only differences between the y at different
positions need to be evaluated. Consequently, the global shifts j cancel
automatically. However, for odd-order correlation functions contributions Beij

remain. Hence, the measured result does not only contain the pure dynamics, but is
significantly perturbed by the unknown fluctuations of j.

Reconstruction procedure. To make the correlation function in equation 2
directly accessible to our reconstruction procedure, we write it in terms of field
operators ĉðxÞ. For this purpose, we use the fact that ŷx commutes for different
positions and employ the polar decomposition to construct an effective field
operator

ĉyðxÞ ¼ n̂ðxÞ1=2eiŷx ; ð7Þ

where n̂ðxÞ ¼ ĉyðxÞĉðxÞ is taken to be the density of one of the two condensates.
The construction ensures that these effective field operators indeed fulfil the correct
commutation relations. Equation 4 follows immediately.

In the cMPS formalism, the translationally invariant correlation functions in
equation 4 can be directly calculated in terms of the cMPS variational parameter
matrices R and Q in the thermodynamic limit as

CðnÞ x1; . . . ; xnð Þ ¼ Tr
�

lim
L!1

eTðL� xnÞðR
1
2 � R

� 1
2ÞeTtn� 1 :

. . . ðR�
1
2 � R

1
2ÞeTt2 ðR

1
2 � R

� 1
2ÞeTt1 ðR�

1
2 � R

1
2Þ
�

with the transfer matrix

T :¼ Q � 1d þ 1d � QþR � R; ð9Þ
and positive distances tj¼ xjþ 1� xj for j¼ 1,y,n� 1. The overline denotes
complex conjugation. This form of the correlator can be derived by the
correspondences between field operators and variational matrices as described in
refs 18,19.

By writing all the matrices in the basis where the transfer matrix T is diagonal
and performing the limit L-N, the correlation function takes the form

CðnÞ t1; . . . ; tn� 1ð Þ ¼
Xd2

fkjg¼1

rk1 ; ... ;kn� 1
elk1 t1 . . . elkn� 1 tn� 1 : ð10Þ

The lk are the eigenvalues of the transfer matrix T, also known as poles and the
pre-factors, usually refered to as residues, are

rk1 ; ... ; kn� 1
¼ M� 1

1;kn� 1
Mkn� 1 ;kn� 2

. . . M� 1
k2 ;k1

Mk1 ;1; ð11Þ

with

M ¼ X � 1ðR
1
2 � R

� 1
2ÞX; ð12Þ

where X has been chosen such that X� 1TX is diagonal16,26. For a fixed bond
dimension, there are in general d2 poles and M 2 Cd2�d2

. Note that this is different
from the definition in ref. 26 where the matrix M stems from density-like
correlation functions

Ô ¼
Y

j

n̂j: ð13Þ

There, according to the calculus of cMPS correlation functions, the field
operator term for each position corresponds to the matrix R � R.

Note that equating two consecutive indices kj, kjþ 1 in the n-point function in
equation 10 leads to a (n� 2)-point function, as expected from equation 2.
Specifically, there are many equivalent projections of a four-point function that
correspond to two-point functions. However, due to imperfections (that is,
deviations from translational invariance), the experimental realizations of these
projections are not identical. Averaging over the projections leads an expression of
the same form of a two-point correlation function from a translationally invariant
cMPS as follows,

Cð2Þ tð Þ ¼
Xd2

k¼1

rkelkt: ð14Þ

The reconstruction starts by extracting the eigenvalues lk from the averaged two-
point correlation function using a least-squares fit and under the assumption of
translational invariance for the modelled system. The suitable bond dimension for
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Figure 2 | Projections of the four-point correlation function. We show projections of the four-point correlators for a hold time of (a) 3 ms, (b) 7 ms and

(c) 23 ms. The quality of the cMPS ansatz decreases substantially with the hold time, with a mean relative deviation E of the full four-point correlator

as indicated in the figures. This increase of the deviation with hold time could be seen as an indicator for the non-equilibrium processes in the system

(see main text), but is presumably also related to the increase in s.e. in the experiment, as indicated by the error bars (Methods section).
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the data at hand can already be judged at this point, by analysing the structure of
the two-point correlation function. To determine all entries of M, n-point functions
with n42 have to be taken into account, since for n¼ 2, only the entries M1,k

� 1 and
Mk,1 appear, see equation 15. Since multiplying M with a constant and conjugating
it with a diagonal matrix whose first entry is equal to one leaves all properties
considered in this work invariant, we can require that M1,k¼ 1 for each k¼ 1,y,
d2 (refs 16,26). The remaining independent entries of the M matrix are fixed by
included four-point correlation data. For this, we use a Nelder–Mead simplex
algorithm that varies the parameters of the M matrix, and calculates the
corresponding residues according to

rk1 ;k2 ;k3
¼ M� 1

1;k3
Mk3 ;k2

M� 1
k2 ;k1

Mk1 ;1
: ð15Þ

Each choice of an M matrix thus gives a prediction for the four-point correlators
and the agreement with the experimental data is taken as the quality indicator for
the algorithm. Working with a cMPS with bond dimension d¼ 2 and relying on a
set of 100 random initial numerical seeds proved to be sufficient for approximating
the measurement data well. Taking into account the gauge and symmetry
arguments26, the employed cMPS, with bond dimension d¼ 2 in terms of lk and
M, has 15 independent parameters in total.

As discussed in the main text, we see a significant decrease of the fit quality with
hold time. There are many issues entering here. One would naturally expect that
entanglement entropies after the sudden quench grow over time leading to the
need for a larger bond dimension. This is presumably the case, but in our analysis,
this is mostly masked by two other effects. First, the statistical error in the
experiment increases substantially with the hold time, making the data for longer
times considerably less reliable (Fig. 2) and also questioning our fit in terms of a
pure state. What is more, the translational invariance assumption is slowly violated
as the hold time increases. This is not surprising, since the light-cone-like dynamics
of the trapped system give good reason to believe that trap effects need time to
enter the center part of the system. As a quantitative probe to estimate how
translational invariant the data are, we consider the two-point correlation function
at 21 different points and calculate the variance over those different positions for
variable distances. The mean of those variances gives a good indicator on how
much the two-point function varies depending on the position it is evaluated at.
We find for the hold times t¼ 3, 7 and 23 ms deviations from translational
invariance of 0.3� 10� 2, 5.4� 10� 2 and 8.3� 10� 2, clearly indicating that for
longer hold times, our assumption of translational invariance is considerably less
accurate. Given these limitations of the data set and the fact that the two-point
functions averaged over different positions does not possess a rich enough
structure, we feel that using a bond dimension larger than d¼ 2 would be
overfitting. Let us point out that this is by no means a limitation of our method as
such, as reconstructions with higher bond dimension could easily be performed
using matrix-pencil methods as described in ref. 26.

Quantifying the statistical compatibility and error analysis. To quantify the
error of our tomography procedure, we use the relative mean deviation with respect
to the fitted (reconstructed) data,

E ¼ Sj j � 1
X
x2S

C xð Þ�Crec xð Þj j2

Crec xð Þj j2

 !1=2

; ð16Þ

where S is the set of all data points x¼ (x1,y, xn) with x1rx2r?rxn, and |S|
denotes the number of elements in S. In addition, to estimate the robustness of our
algorithm, we employ a bootstrapping method (see, for example, ref. 34). Namely,
starting with the reconstructed four-point function from the experimental data, we
add Gaussian noise with zero mean and s.d. given by the statistical uncertainties
from the experiment. Subsequently, we perform our cMPS tomography procedure
and reconstruct the six-point function. We repeated this procedure 100 times and
computed the entry-wise relative standard deviation of the six-point functions. For
the average over all entries, we obtain a deviation of 1.1% (with a maximum relative
s.d. of 2.8%). This confirms that our reconstruction procedure is robust to the
errors we expect in the experiment.
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