379 research outputs found

    Some Conceptual and Scaling Evaluations of Snowmelt Events Forced by Warm Soil

    Get PDF
    Snowfall occasionally occurs over bare soil with high thermal storage in its upper layer. Quantification and generalization of the potential impact of the thermal storage on episodic snowmelt is evaluated using a scaling approach and assuming negligible net thermal flux at the snow cover top. Soil thermal flux contribution to snowmelt is found to be affected significantly by the level of soil wetness. It is shown that, for a soil temperature of 10°C prior to the snowfall, the contribution of wet soil thermal flux is significant within the first 12 h when compared with intense surface moist enthalpy flux or solar radiation. Implications of these results to modeling of snowmelt using coupled soil–atmosphere models are elaborated

    Sensitivity of Simulated Regional Surface Thermal Fluxes during Warm Advection Snowmelt to Selection of the Lowest Model Level Height

    Get PDF
    Under strong warm advection, sensible and latent heat fluxes may provide larger energy for surface snowmelt than does net radiation flux. With these thermally stable conditions, the height of the first model level may be well above the surface-layer depth and thus outside the range of applicability of the surface-layer similarity theory on which the models' surface thermal flux computation is based. This situation can strongly affect the magnitude of simulated surface thermal fluxes and snowmelt. To explore this issue, the impact of selected heights of the first model level on the simulated surface fluxes and snowmelt under stable surface stratification conditions was investigated. Simulations using a mesoscale atmospheric model considering two extreme contrasts in surface roughness were performed. Setting the first model level to 3 or 10 m, which typically was within the stable surface layer, yielded nearly the same contribution of simulated surface turbulent thermal fluxes to snowmelt. When the first model level height was set at about 40 m, as is used in many regional model simulations, it exceeded the depth of the stable surface layer over the snow cover. The surface turbulent thermal flux contribution in this case was smaller (by about 40%), with a directly proportional effect on the snowmelt. Pending observational support, results presented in this study imply that setting a model's lowest level to 10 m or less will likely improve simulated snowmelt accuracy during warm advection.This article is from Journal of Hydrometeorology 2 (2001): 395, doi: 2.0.CO;2" target="_blank">10.1175/1525-7541(2001)0022.0.CO;2. Posted with permission.</p

    Non-extremal Charged Rotating Black Holes in Seven-Dimensional Gauged Supergravity

    Get PDF
    We obtain the solution for non-extremal charged rotating black holes in seven-dimensional gauged supergravity, in the case where the three rotation parameters are set equal. There are two independent charges, corresponding to gauge fields in the U(1)xU(1) abelian subgroup of the SO(5) gauge group. A new feature in these solutions, not seen previously in lower-dimensional examples, is that the first-order "odd-dimensional self-duality" equation for the 4-form field strength plays a non-trivial role. We also study the BPS limit of our solutions where the black holes become supersymmetric. Our results are of significance for the AdS_7/CFT_6 correspondence in M-theory.Comment: Latex, 12 pages, typos corrected and a reference adde

    Charged Rotating Black Holes in Four-Dimensional Gauged and Ungauged Supergravities

    Full text link
    We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1)^4\subset O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS_4/CFT_3 correspondence at non-zero temperature.Comment: Latex, 30 page

    Small Horizons

    Get PDF
    All near horizon geometries of supersymmetric black holes in a N=2, D=5 higher-derivative supergravity theory are classified. Depending on the choice of near-horizon data we find that either there are no regular horizons, or horizons exist and the spatial cross-sections of the event horizons are conformal to a squashed or round S^3, S^1 * S^2, or T^3. If the conformal factor is constant then the solutions are maximally supersymmetric. If the conformal factor is not constant, we find that it satisfies a non-linear vortex equation, and the horizon may admit scalar hair.Comment: 21 pages, latex. Typos corrected and reference adde

    Incommensurate spin correlations in highly oxidized cobaltates La2x_{2-x}Srx_{x}CoO4_{4}

    Get PDF
    We observe quasi-static incommensurate magnetic peaks in neutron scattering experiments on layered cobalt oxides La2-xSrxCoO4 with high Co oxidation states that have been reported to be paramagnetic. This enables us to measure the magnetic excitations in this highly hole-doped incommensurate regime and compare our results with those found in the low-doped incommensurate regime that exhibit hourglass magnetic spectra. The hourglass shape of magnetic excitations completely disappears given a high Sr doping. Moreover, broad low-energy excitations are found, which are not centered at the incommensurate magnetic peak positions but around the quarter-integer values that are typically exhibited by excitations in the checkerboard charge ordered phase. Our findings suggest that the strong inter-site exchange interactions in the undoped islands are critical for the emergence of hourglass spectra in the incommensurate magnetic phases of La2-xSrxCoO4.Comment: http://www.nature.com/articles/srep25117

    Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides La2x_{2-x}Srx_xCoO4_4

    Get PDF
    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.Comment: Nature Communications 5, 5731 (2014

    From Fake Supergravity to Superstars

    Get PDF
    The fake supergravity method is applied to 5-dimensional asymptotically AdS spacetimes containing gravity coupled to a real scalar and an abelian gauge field. The motivation is to obtain bulk solutions with R x S^3 symmetry in order to explore the AdS/CFT correspondence when the boundary gauge theory is on R x S^3. A fake supergravity action, invariant under local supersymmetry through linear order in fermion fields, is obtained. The gauge field makes things more restrictive than in previous applications of fake supergravity which allowed quite general scalar potentials. Here the superpotential must take the form W(\phi) ~ exp(-k\phi) + c exp(2\phi/(3k)), and the only freedom is the choice of the constant k. The fermion transformation rules of fake supergravity lead to fake Killing spinor equations. From their integrability conditions, we obtain first order differential equations which we solve analytically to find singular electrically charged solutions of the Lagrangian field equations. A Schwarzschild mass term can be added to produce a horizon which shields the singularity. The solutions, which include "superstars", turn out to be known in the literature. We compute their holographic parameters.Comment: 42 pages, 3 figure

    Electronic and magnetic nano phase separation in cobaltates La2x_{2-x}Srx_{x}CoO4_4

    Get PDF
    The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.Comment: * plenary talk SUPERSTRIPES conference 201
    corecore