8 research outputs found

    Off-line compensation of the tool path deviations on robotic machining : Application to incremental sheet forming

    No full text
    International audienceIn this paper, a coupling methodology is involved and improved to correct the tool path deviations induced by the compliance of industrial robots during an incremental sheet forming task. For that purpose, a robust and systematic method is first proposed to derive the elastic model of their structure and an efficient FE simulation of the process is then used to predict accurately the forming forces. Their values are then defined as the inputs of the proposed elastic model to calculate the robot TCP pose errors induced by the elastic deformations. This avoid thus a first step of measurement of the forces required to form a test part with a stiff machine. An intensive experimental investigation is performed by forming a classical frustum cone and a non-symetrical twisted pyramid. It validates the robustness of both the FE analysis and the proposed elastic modeling allowing the final geometry of the formed parts to converge towards their nominal specifications in a context of prototyping applications

    Commande en effort robuste et compensation de trajectoire en temps réel pour les robots industriels sous fortes charges : application au soudage par friction malaxage robotisé (RFSW)

    No full text
    Friction Stir Welding (FSW) is an innovative welding process for materials with a low melting point (aluminium, copper
). It was patented in 1992 by the English organization The Welding Institute (TWI). For many years, an effort is done to reduce the investment cost for industrial applications. FSW process involves a rotating tool advancing along a path. Currently, gantry-type CNC systems are using for FSW manufacturing. These machines offer a high stiffness and can tolerate the forces during FSW in order to carry out a good weld quality. Industrials robots can reduce the investment cost; however they are not design for these applications. The main limitation is the low stiffness of the robot structure. Consequently, the robot deformation under the high process forces causes tool deviations about several millimeters. The robot path has to be compensated in order to obtain a good weld quality. The aim of this thesis is to develop a robust robotized process. The first goal is to realize a robust force control. During FSW, a constant axial forging force should be applied. Axial tool deviation is compensated with the force control approach. In this way, a modeling and identification method is done in order to design a force controller. The force controller is robust because no tuning is required, even if welding parameters or robot paths change. An experimental validation in FSW is done. The second goal is to realize a compensation of the lateral tool deviation. Unlike the axial deformation, there is no force to maintain for compensate this deviation. In industry, the lateral tool deviation could be compensated with a camera or laser sensor in order to track the weld seam path during welding. However, the cost of a seam tracking device, the aluminium reflexion and the lack of visibility in lap joint configuration are significant drawbacks. In this chapter, a compensation algorithm is designed. An elastostatic model of the robot is used to estimate in real time the deflection of the robot TCP. The compensation algorithm is coupled with the force controller defined previously. Compare with others research works about this topic, identification methods don’t need a 3D measurement system (CCD camera or laser tracker). The cost of such system is a main drawback for industrial applications. In this thesis, identification methods are easy to implement in an industrial robot and available for others processes like machining or polishing.Le soudage par friction malaxage (FSW) est un procĂ©dĂ© de soudage innovant pour les matĂ©riaux Ă  bas point de fusion (aluminium, cuivre
). Il a Ă©tĂ© brevetĂ© en 1992 par l’organisme anglais The Welding Institute (TWI). Depuis plusieurs annĂ©es, celui-ci se dĂ©veloppe dans l’industrie en cherchant Ă  rĂ©duire son coĂ»t d’investissement. Le principe du FSW est de rĂ©aliser un cordon de soudure grĂące Ă  un outil animĂ© d’un mouvement de rotation et d’avance. Les niveaux d’efforts et de prĂ©cision requis contraignent Ă  l’utilisation de machines cartĂ©siennes de grande envergure. L’utilisation des robots industriels est un moyen de rĂ©duire les coĂ»ts, mais ils ne sont pas conçus pour ce genre d’applications et leur inconvĂ©nient majeur rĂ©side dans leur manque de rigiditĂ©. Ainsi, lorsque l’outil entre en contact avec les piĂšces Ă  assembler, celui-ci peut dĂ©vier de plusieurs millimĂštres dans diffĂ©rentes directions de l’espace, rendant la mise en oeuvre d’une compensation de la trajectoire du robot obligatoire afin d’obtenir des soudures sans dĂ©fauts. Le but de cette thĂšse a Ă©tĂ© de dĂ©velopper un procĂ©dĂ© robotisĂ© robuste. Le premier objectif est la mise en oeuvre d’une commande en effort robuste. En effet, en FSW, le maintien d’un effort axial constant est obligatoire. Le contrĂŽle de cet effort permet de compenser la dĂ©viation axiale de l’outil et les dĂ©fauts de mise en position des piĂšces Ă  souder. Ainsi, une dĂ©marche d’identification et de modĂ©lisation afin de crĂ©er une commande en effort a Ă©tĂ© mise en oeuvre. La commande est dĂ©finie de maniĂšre robuste afin d’éviter les rĂ©glages de l’asservissement lorsque les outils, les paramĂštres de soudage ou les trajectoires du robot changent. Une validation expĂ©rimentale complĂšte a Ă©tĂ© rĂ©alisĂ©e dans le contexte du FSW. Le second objectif de cette thĂšse a Ă©tĂ© de dĂ©velopper une compensation de la dĂ©viation latĂ©rale de l’outil. Contrairement Ă  l’objectif prĂ©cĂ©dent, il n’y a pas d’effort Ă  maintenir pour compenser cette dĂ©viation latĂ©rale. Dans l’industrie, cette dĂ©viation peut ĂȘtre compensĂ©e Ă  l’aide d’un systĂšme de vision, mais ce dernier comporte de nombreux inconvĂ©nients en FSW (rĂ©flexion de l’aluminium, non visibilitĂ© du joint, coĂ»t, mise en oeuvre complexe). Ainsi, dans cette partie, un algorithme de compensation temps rĂ©el de la dĂ©viation latĂ©rale de l’outil a Ă©tĂ© mis en oeuvre. Celui-ci repose sur l’identification d’un modĂšle Ă©lasto-statique du robot. L’algorithme de compensation de la dĂ©viation latĂ©rale de l’outil a Ă©tĂ© couplĂ© Ă  la commande en effort et validĂ© expĂ©rimentalement en FSW. La diffĂ©rence avec la majoritĂ© des travaux de recherche dans ce domaine est que les procĂ©dures d’identification n’utilisent pas de systĂšme de mesure 3D (photogrammĂ©trie CCD ou laser de poursuite) dont le coĂ»t est un frein indĂ©niable pour beaucoup d’industriels. La dĂ©marche est simple Ă  mettre en oeuvre sur un robot industriel du marchĂ© actuel, et applicable pour d’autres procĂ©dĂ©s Ă  contact comme l’usinage ou le polissage

    Robust force control and path compensation in real time for inductrial robots under high forces : application to robotic friction stir welding (RFSW)

    No full text
    Le soudage par friction malaxage (FSW) est un procĂ©dĂ© de soudage innovant pour les matĂ©riaux Ă  bas point de fusion (aluminium, cuivre
). Il a Ă©tĂ© brevetĂ© en 1992 par l’organisme anglais The Welding Institute (TWI). Depuis plusieurs annĂ©es, celui-ci se dĂ©veloppe dans l’industrie en cherchant Ă  rĂ©duire son coĂ»t d’investissement. Le principe du FSW est de rĂ©aliser un cordon de soudure grĂące Ă  un outil animĂ© d’un mouvement de rotation et d’avance. Les niveaux d’efforts et de prĂ©cision requis contraignent Ă  l’utilisation de machines cartĂ©siennes de grande envergure. L’utilisation des robots industriels est un moyen de rĂ©duire les coĂ»ts, mais ils ne sont pas conçus pour ce genre d’applications et leur inconvĂ©nient majeur rĂ©side dans leur manque de rigiditĂ©. Ainsi, lorsque l’outil entre en contact avec les piĂšces Ă  assembler, celui-ci peut dĂ©vier de plusieurs millimĂštres dans diffĂ©rentes directions de l’espace, rendant la mise en oeuvre d’une compensation de la trajectoire du robot obligatoire afin d’obtenir des soudures sans dĂ©fauts. Le but de cette thĂšse a Ă©tĂ© de dĂ©velopper un procĂ©dĂ© robotisĂ© robuste. Le premier objectif est la mise en oeuvre d’une commande en effort robuste. En effet, en FSW, le maintien d’un effort axial constant est obligatoire. Le contrĂŽle de cet effort permet de compenser la dĂ©viation axiale de l’outil et les dĂ©fauts de mise en position des piĂšces Ă  souder. Ainsi, une dĂ©marche d’identification et de modĂ©lisation afin de crĂ©er une commande en effort a Ă©tĂ© mise en oeuvre. La commande est dĂ©finie de maniĂšre robuste afin d’éviter les rĂ©glages de l’asservissement lorsque les outils, les paramĂštres de soudage ou les trajectoires du robot changent. Une validation expĂ©rimentale complĂšte a Ă©tĂ© rĂ©alisĂ©e dans le contexte du FSW. Le second objectif de cette thĂšse a Ă©tĂ© de dĂ©velopper une compensation de la dĂ©viation latĂ©rale de l’outil. Contrairement Ă  l’objectif prĂ©cĂ©dent, il n’y a pas d’effort Ă  maintenir pour compenser cette dĂ©viation latĂ©rale. Dans l’industrie, cette dĂ©viation peut ĂȘtre compensĂ©e Ă  l’aide d’un systĂšme de vision, mais ce dernier comporte de nombreux inconvĂ©nients en FSW (rĂ©flexion de l’aluminium, non visibilitĂ© du joint, coĂ»t, mise en oeuvre complexe). Ainsi, dans cette partie, un algorithme de compensation temps rĂ©el de la dĂ©viation latĂ©rale de l’outil a Ă©tĂ© mis en oeuvre. Celui-ci repose sur l’identification d’un modĂšle Ă©lasto-statique du robot. L’algorithme de compensation de la dĂ©viation latĂ©rale de l’outil a Ă©tĂ© couplĂ© Ă  la commande en effort et validĂ© expĂ©rimentalement en FSW. La diffĂ©rence avec la majoritĂ© des travaux de recherche dans ce domaine est que les procĂ©dures d’identification n’utilisent pas de systĂšme de mesure 3D (photogrammĂ©trie CCD ou laser de poursuite) dont le coĂ»t est un frein indĂ©niable pour beaucoup d’industriels. La dĂ©marche est simple Ă  mettre en oeuvre sur un robot industriel du marchĂ© actuel, et applicable pour d’autres procĂ©dĂ©s Ă  contact comme l’usinage ou le polissage.Friction Stir Welding (FSW) is an innovative welding process for materials with a low melting point (aluminium, copper
). It was patented in 1992 by the English organization The Welding Institute (TWI). For many years, an effort is done to reduce the investment cost for industrial applications. FSW process involves a rotating tool advancing along a path. Currently, gantry-type CNC systems are using for FSW manufacturing. These machines offer a high stiffness and can tolerate the forces during FSW in order to carry out a good weld quality. Industrials robots can reduce the investment cost; however they are not design for these applications. The main limitation is the low stiffness of the robot structure. Consequently, the robot deformation under the high process forces causes tool deviations about several millimeters. The robot path has to be compensated in order to obtain a good weld quality. The aim of this thesis is to develop a robust robotized process. The first goal is to realize a robust force control. During FSW, a constant axial forging force should be applied. Axial tool deviation is compensated with the force control approach. In this way, a modeling and identification method is done in order to design a force controller. The force controller is robust because no tuning is required, even if welding parameters or robot paths change. An experimental validation in FSW is done. The second goal is to realize a compensation of the lateral tool deviation. Unlike the axial deformation, there is no force to maintain for compensate this deviation. In industry, the lateral tool deviation could be compensated with a camera or laser sensor in order to track the weld seam path during welding. However, the cost of a seam tracking device, the aluminium reflexion and the lack of visibility in lap joint configuration are significant drawbacks. In this chapter, a compensation algorithm is designed. An elastostatic model of the robot is used to estimate in real time the deflection of the robot TCP. The compensation algorithm is coupled with the force controller defined previously. Compare with others research works about this topic, identification methods don’t need a 3D measurement system (CCD camera or laser tracker). The cost of such system is a main drawback for industrial applications. In this thesis, identification methods are easy to implement in an industrial robot and available for others processes like machining or polishing

    El futuro del trabajo: Reflexiones sobre cambios emergentes en el entorno laboral y su impacto sobre la formaciĂłn y el conocimiento en las sociedades avanzadas Enric Bas & Mario GuillĂł

    No full text
    The globa l context and changing in which organizations currently operate (publÍc or private), expect that they approach the different probJematic be faced from a holistic perspective and in advance. One ofthe key Íssues that arise are the changes that are taking place in the level global - and with more strong inside the advance societies -in the organization of work, changes faster and whose main characteristic of the dissolution traditional models ofproduction and organization. We are faced wÍth what Zygmunt Bauman called "liquÍd society", a historical period marked by instability and social defenseless and where the management of complexity and changes uppose a challenge for trying to anticipate which are going to be the characteristics of new mode  ls of organizations structures, models of models from whÍch theÍr needs in the subject fo r human re  sources.  El contexto global y cambiante en el que actualmente operan las organizaciones (pĂșblicas o privadas), exige que Ă©stas aborden las diferentes problemĂĄticas a las que se  enfrentan  desde  una perspectiva holista y de anticipaciĂłn. Una de las problemĂĄticas clave que se plantea son los cambios que se estĂĄn produciendo a nivel global -y  con mĂĄs fuerza dentro de las sociedades avanzadas- en la organizaciĂłn del trabajo, cambios cada vez mĂĄs acelerados y que tienen como principal caracterĂ­stica la disoluciĂłn de los modelos tradicionales de producciĂłn y organizaciĂłn. Nos enfrentamos a lo que Zygmunt Bauman ha denominado "Sociedad LĂ­quida", un tiempo histĂłrico caracterizado por la inestabilidad y el  desamparo social, y donde la gestiĂłn de  la complejidad y el cambio supone un reto para tratar de  anticipar cuales serĂĄn las caracterĂ­sticas  de los nuevos modelos de estructuraciĂłn de las organizaciones, modelos de los que se derivarĂĄn sus necesidades en materia de recursos humanos

    METHOD AND DEVICE FOR ADJUSTING AN ACTUATED MECHANICAL SYSTEM

    No full text
    The invention relates to a method and to a device for adjusting an actuated mechanical system (ROB), in which closed-loop control of the actuated mechanical system is implemented with respect to a physical quantity issued by at least one sensor (CAP). According to the invention, during a first identification step, a first transfer function PID is selected in accordance with a first adjustment of the controller (CONT2), during a second step, a second transfer function (G) is determined, giving the measured value (Fm) on the basis of the movement quantity ([Delta]Xd) calculated during the course of the first step, during a third step, a control law of the second controller (CONT2) is selected in accordance with a second adjustment of the controller (CONT2), said law being determined from at least the second transfer function (G) to give the movement quantity ([Delta]Xd); present on the second output (S2)

    Simulation-based validation of smart grids – Status quo and future research trends

    Get PDF
    Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and roll-out of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems. © Springer International Publishing AG 2017acceptedVersio
    corecore