102 research outputs found

    Potential risk of regional disease spread in west Africa through cross-border cattle trade

    Get PDF
    Transboundary animal movements facilitate the spread of pathogens across large distances. Cross-border cattle trade is of economic and cultural importance in West Africa. This study explores the potential disease risk resulting from large-scale, cross-border cattle trade between Togo, Burkina Faso, Ghana, Benin, and Nigeria for the first time.; A questionnaire-based survey of livestock movements of 226 cattle traders was conducted in the 9 biggest cattle markets of northern Togo in February-March 2012. More than half of the traders (53.5%) operated in at least one other country. Animal flows were stochastically simulated based on reported movements and the risk of regional disease spread assessed. More than three quarters (79.2%, range: 78.1-80.0%) of cattle flowing into the market system originated from other countries. Through the cattle market system of northern Togo, non-neighbouring countries were connected via potential routes for disease spread. Even for diseases with low transmissibility and low prevalence in a given country, there was a high risk of disease introduction into other countries.; By stochastically simulating data collected by interviewing cattle traders in northern Togo, this study identifies potential risks for regional disease spread in West Africa through cross-border cattle trade. The findings highlight that surveillance for emerging infectious diseases as well as control activities targeting endemic diseases in West Africa are likely to be ineffective if only conducted at a national level. A regional approach to disease surveillance, prevention and control is essential

    Numerical simulation on a fixed mesh for the feedback stabilization of a fluid–structure interaction system with a structure given by a finite number of parameters

    Get PDF
    We study the numerical approximation of a 2d fluid–structure interaction problem stabilizing the fluid flow around an unstable stationary solution in presence of boundary perturbations. The structure is governed by a finite number of parameters and a feedback control law acts on their accelerations. The existence of strong solutions and the stabilization of this fluid–structure system were recently studied in [3]. The present work is dedicated to the numerical simulation of the problem using a fictitious domain method based on extended Finite Element [4]. The originality of the present work is to propose efficient numerical tools that can be extended in a simple manner to any fluid-structure control simulation. Numerical tests are given and the stabilization at an exponential decay rate is observed for small enough initial perturbations

    Simulating contact networks for livestock disease epidemiology: a systematic review

    Get PDF
    Contact structure among livestock populations influences the transmission of infectious agents among them. Models simulating realistic contact networks therefore have important applications for generating insights relevant to livestock diseases. This systematic review identifies and compares such models, their applications, data sources and how their validity was assessed. From 52 publications, 37 models were identified comprising seven model frameworks. These included mathematical models (n = 8; including generalized random graphs, scale-free, Watts-Strogatz and spatial models), agent-based models (n = 8), radiation models (n = 1) (collectively, considered 'mechanistic'), gravity models (n = 4), exponential random graph models (n = 9), other forms of statistical model (n = 6) (statistical) and random forests (n = 1) (machine learning). Overall, nearly half of the models were used as inputs for network-based epidemiological models. In all models, edges represented livestock movements, sometimes alongside other forms of contact. Statistical models were often applied to infer factors associated with network formation (n = 12). Mechanistic models were commonly applied to assess the interaction between network structure and disease dissemination (n = 6). Mechanistic, statistical and machine learning models were all applied to generate networks given limited data (n = 13). There was considerable variation in the approaches used for model validation. Finally, we discuss the relative strengths and weaknesses of model frameworks in different use cases

    Transmission tree of the highly pathogenic avian influenza (H5N1) epidemic in Israel, 2015

    Get PDF
    The transmission tree of the Israeli 2015 epidemic of highly pathogenic avian influenza (H5N1) was modelled by combining the spatio-temporal distribution of the outbreaks and the genetic distance between virus isolates. The most likely successions of transmission events were determined and transmission parameters were estimated. It was found that the median infectious pressure exerted at 1 km was 1.59 times (95% CI 1.04, 6.01) and 3.54 times (95% CI 1.09, 131.75) higher than that exerted at 2 and 5 km, respectively, and that three farms were responsible for all seven transmission events. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13567-016-0393-2) contains supplementary material, which is available to authorized users

    EPINEST, an agent-based model to simulate epidemic dynamics in large-scale poultry production and distribution networks

    Get PDF
    The rapid intensification of poultry production raises important concerns about the associated risks of zoonotic infections. Here, we introduce EPINEST (EPIdemic NEtwork Simulation in poultry Transportation systems): an agent-based modelling framework designed to simulate pathogen transmission within realistic poultry production and distribution networks. We provide example applications to broiler production in Bangladesh, but the modular structure of the model allows for easy parameterization to suit specific countries and system configurations. Moreover, the framework enables the replication of a wide range of eco-epidemiological scenarios by incorporating diverse pathogen life-history traits, modes of transmission and interactions between multiple strains and/or pathogens. EPINEST was developed in the context of an interdisciplinary multi-centre study conducted in Bangladesh, India, Vietnam and Sri Lanka, and will facilitate the investigation of the spreading patterns of various health hazards such as avian influenza, Campylobacter, Salmonella and antimicrobial resistance in these countries. Furthermore, this modelling framework holds potential for broader application in veterinary epidemiology and One Health research, extending its relevance beyond poultry to encompass other livestock species and disease systems

    A Systematic Review and Meta-Analysis of Practices Exposing Humans to Avian Influenza Viruses, Their Prevalence, and Rationale

    Get PDF
    Almost all human infections by avian influenza viruses (AIVs) are transmitted from poultry. A systematic review was conducted to identify practices associated with human infections, their prevalence, and rationale. Observational studies were identified through database searches. Meta-analysis produced combined odds ratio estimates. The prevalence of practices and rationales for their adoptions were reported. Of the 48,217 records initially identified, 65 articles were included. Direct and indirect exposures to poultry were associated with infection for all investigated viral subtypes and settings. For the most frequently reported practices, association with infection seemed stronger in markets than households, for sick and dead than healthy poultry, and for H7N9 than H5N1. Practices were often described in general terms and their frequency and intensity of contact were not provided. The prevalence of practices was highly variable across studies, and no studies comprehensively explored reasons behind the adoption of practices. Combining epidemiological and targeted anthropological studies would increase the spectrum and detail of practices that could be investigated and should aim to provide insights into the rationale(s) for their existence. A better understanding of these rationales may help to design more realistic and acceptable preventive public health measures and messages

    A dynamic model of transmission and elimination of peste des petits ruminants in Ethiopia

    Get PDF
    Peste des petits ruminants (PPR), a devastating viral disease of sheep and goats, has been targeted by the global community for eradication within the next 15 years. Although an efficacious attenuated live vaccine is available, the lack of knowledge about the transmission potential of PPR virus (PPRV) may compromise eradication efforts. By fitting a metapopulation model simulating PPRV spread to the results of a nationwide serological survey in Ethiopia, we estimated the level of viral transmission in an endemic setting and the vaccination coverage required for elimination. Results suggest that the pastoral production system as a whole acts as a viral reservoir, from which PPRV spills over into the sedentary production system, where viral persistence is uncertain. Estimated levels of PPRV transmission indicate that viral spread could be prevented if the proportion of immune small ruminants is kept permanently above 37% in at least 71% of pastoral village populations. However, due to the high turnover of these populations, maintaining the fraction of immune animals above this threshold would require high vaccine coverage within villages, and vaccination campaigns to be conducted annually. Adapting vaccination strategies to the specific characteristics of the local epidemiological context and small ruminant population dynamics would result in optimized allocation of limited resources and increase the likelihood of PPR eradication
    • …
    corecore