612 research outputs found

    Serum miR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1

    Get PDF
    OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3′-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3′-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3′-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features

    Searching for Black Hole Candidates by LAMOST and ASAS-SN

    Get PDF
    Most dynamically confirmed stellar-mass black holes (BHs) and their candidates were originally selected from X-ray outbursts. In the present work, we search for BH candidates in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey using the spectra along with photometry from the All Sky Automated Survey for SuperNovae (ASAS-SN), where the orbital period of the binary may be revealed by the periodic light curve, such as the ellipsoidal modulation type. Our sample consists of nine binaries, where each source contains a giant star with large radial velocity variation (ΔV_R ≳ 70 km s^(-1)) and periods known from light curves. We focus on the nine sources with long periods (T_(ph) > 5 days) and evaluate the mass M_2 of the optically invisible companion. Since the observed ΔV_R from only a few repeating spectroscopic observations is a lower limit of the real amplitude, the real mass M_2 can be significantly higher than the current evaluation. It is likely an efficient method to place constraints on M 2 by combining ΔV_R from LAMOST and T_(ph) from ASAS-SN, particularly by the ongoing LAMOST Medium Resolution Survey

    FGF18 Enhances Migration and the Epithelial-Mesenchymal Transition in Breast Cancer by Regulating Akt/GSK3β/Β-Catenin Signaling

    Get PDF
    Background/Aims: Fibroblast growth factors (FGFs) and their high-affinity receptors contribute to autocrine and paracrine growth stimulation in several human malignant tumors, including breast cancer. However, the mechanisms underlying the carcinogenic actions of FGF18 remain unclear. Methods: The transcription level of FGF18 under the hypoxic condition was detected with quantitative PCR (qPCR). A wound-healing assay was performed to assess the role of FGF18 in cell migration. A clonogenicity assay was used to determine whether FGF18 silencing affected cell clonogenicity. Western blotting was performed to investigate Akt/GSK3β/β-catenin pathway protein expression. Binding of β-catenin to the target gene promoter was determined by chromatin immunoprecipitation (ChIP) assays. Results: FGF18 promoted the epithelial-mesenchymal transition (EMT) and migration in breast cancer cells through activation of the Akt/GSK3β/β-catenin pathway. FGF18 increased Akt-Ser473 and -Thr308 phosphorylation, as well as that of GSK3β-Ser9. FGF18 also enhanced the transcription of proliferation-related genes (CDK2, CCND2, Ki67), metastasis-related genes (TGF-β, MMP-2, MMP-9), and EMT markers (Snail-1, Snail-2, N-cadherin, vimentin, TIMP1). β-catenin bound to the target gene promoter on the ChIP assay. Conclusion: FGF18 contributes to the migration and EMT of breast cancer cells following activation of the Akt/GSK3β/β-catenin pathway. FGF18 expression may be a potential prognostic therapeutic marker for breast cancer

    Proton-Boron Fusion Yield Increased by Orders of Magnitude with Foam Targets

    Full text link
    A novel intense beam-driven scheme for high yield of the tri-alpha reaction 11B(p,{\alpha})2{\alpha} was investigated. We used a foam target made of cellulose triacetate (TAC, C_9H_{16}O_8) doped with boron. It was then heated volumetrically by soft X-ray radiation from a laser heated hohlraum and turned into a homogenous, and long living plasma. We employed a picosecond laser pulse to generate a high-intensity energetic proton beam via the well-known Target Normal Sheath Acceleration (TNSA) mechanism. We observed up to 10^{10}/sr {\alpha} particles per laser shot. This constitutes presently the highest yield value normalized to the laser energy on target. The measured fusion yield per proton exceeds the classical expectation of beam-target reactions by up to four orders of magnitude under high proton intensities. This enhancement is attributed to the strong electric fields and nonequilibrium thermonuclear fusion reactions as a result of the new method. Our approach shows opportunities to pursue ignition of aneutronic fusion

    Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches

    Get PDF
    [EN] The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis geneCitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotypeMM) into partial andromonoecy (genotypeMm) or andromonoecy (genotypemm). We phenotyped and genotyped, for theM/mlocus, a panel of 207 C. lanatusaccessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite beingMM. A cosegregation analysis between a SNV inCitACS4and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent onCitACS4, but conferred by an unlinked recessive gene which we calledpa. Two different approaches were performed to map thepagene in the genome ofC. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates thatpamaps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down thepalocus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.This work has been funded by grant UAL18-BIO-B017-B, awarded by the call "Proyectos UAL-FEDER " within the framework of the 2014-2020 FEDER-Andalusia Operational Program, as well as by the research group BIO293 of the University of Almeria.Aguado, E.; García, A.; Iglesias-Moya, J.; Romero, J.; Wehner, TC.; Gómez-Guillamón, ML.; Picó Sirvent, MB.... (2020). Mapping a Partial Andromonoecy Locus in Citrullus lanatus Using BSA-Seq and GWAS Approaches. Frontiers in Plant Science. 11:1-16. https://doi.org/10.3389/fpls.2020.01243S11611Aguado, E., García, A., Manzano, S., Valenzuela, J. L., Cuevas, J., Pinillos, V., & Jamilena, M. (2018). The sex-determining gene CitACS4 is a pleiotropic regulator of flower and fruit development in watermelon (Citrullus lanatus). Plant Reproduction, 31(4), 411-426. doi:10.1007/s00497-018-0346-1Bo, K., Miao, H., Wang, M., Xie, X., Song, Z., Xie, Q., … Gu, X. (2018). Novel loci fsd6.1 and Csgl3 regulate ultra-high fruit spine density in cucumber. Theoretical and Applied Genetics, 132(1), 27-40. doi:10.1007/s00122-018-3191-6Bo, K., Wei, S., Wang, W., Miao, H., Dong, S., Zhang, S., & Gu, X. (2019). QTL mapping and genome-wide association study reveal two novel loci associated with green flesh color in cucumber. BMC Plant Biology, 19(1). doi:10.1186/s12870-019-1835-6Boualem, A., Fergany, M., Fernandez, R., Troadec, C., Martin, A., Morin, H., … Bendahmane, A. (2008). A Conserved Mutation in an Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Melons. Science, 321(5890), 836-838. doi:10.1126/science.1159023Boualem, A., Troadec, C., Kovalski, I., Sari, M.-A., Perl-Treves, R., & Bendahmane, A. (2009). A Conserved Ethylene Biosynthesis Enzyme Leads to Andromonoecy in Two Cucumis Species. PLoS ONE, 4(7), e6144. doi:10.1371/journal.pone.0006144Boualem, A., Troadec, C., Camps, C., Lemhemdi, A., Morin, H., Sari, M.-A., … Bendahmane, A. (2015). A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science, 350(6261), 688-691. doi:10.1126/science.aac8370Boualem, A., Lemhemdi, A., Sari, M.-A., Pignoly, S., Troadec, C., Abou Choucha, F., … Bendahmane, A. (2016). The Andromonoecious Sex Determination Gene Predates the Separation of Cucumis and Citrullus Genera. PLOS ONE, 11(5), e0155444. doi:10.1371/journal.pone.0155444Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633-2635. doi:10.1093/bioinformatics/btm308Chae, E., Tan, Q. K.-G., Hill, T. A., & Irish, V. F. (2008). AnArabidopsisF-box protein acts as a transcriptional co-factor to regulate floral development. Development, 135(7), 1235-1245. doi:10.1242/dev.015842Chen, H., Sun, J., Li, S., Cui, Q., Zhang, H., Xin, F., … Huang, S. (2016). An ACC Oxidase Gene Essential for Cucumber Carpel Development. Molecular Plant, 9(9), 1315-1327. doi:10.1016/j.molp.2016.06.018Crow, J. F. (1990). Mapping functions. Genetics, 125(4), 669-671. doi:10.1093/genetics/125.4.669DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. doi:10.1038/ng.806Díaz, A., Zarouri, B., Fergany, M., Eduardo, I., Álvarez, J. M., Picó, B., & Monforte, A. J. (2014). Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLoS ONE, 9(8), e104188. doi:10.1371/journal.pone.0104188Dou, J., Lu, X., Ali, A., Zhao, S., Zhang, L., He, N., & Liu, W. (2018). Genetic mapping reveals a marker for yellow skin in watermelon (Citrullus lanatus L.). PLOS ONE, 13(9), e0200617. doi:10.1371/journal.pone.0200617Dou, J., Zhao, S., Lu, X., He, N., Zhang, L., Ali, A., … Liu, W. (2018). Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theoretical and Applied Genetics, 131(4), 947-958. doi:10.1007/s00122-018-3050-5Duan, Y., Li, S., Chen, Z., Zheng, L., Diao, Z., Zhou, Y., … Wu, W. (2012). Dwarf and deformed flower 1,encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativaL.). The Plant Journal, 72(5), 829-842. doi:10.1111/j.1365-313x.2012.05126.xEstornell, L. H., Landberg, K., Cierlik, I., & Sundberg, E. (2018). SHI/STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00150Gagne, J. M., Smalle, J., Gingerich, D. J., Walker, J. M., Yoo, S.-D., Yanagisawa, S., & Vierstra, R. D. (2004). Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences, 101(17), 6803-6808. doi:10.1073/pnas.0401698101García, A., Aguado, E., Martínez, C., Loska, D., Beltrán, S., Valenzuela, J. L., … Jamilena, M. (2019). The ethylene receptors CpETR1A and CpETR2B cooperate in the control of sex determination in Cucurbita pepo. Journal of Experimental Botany, 71(1), 154-167. doi:10.1093/jxb/erz417Gebremeskel, H., Dou, J., Li, B., Zhao, S., Muhammad, U., Lu, X., … Liu, W. (2019). Molecular Mapping and Candidate Gene Analysis for GA3 Responsive Short Internode in Watermelon (Citrullus lanatus). International Journal of Molecular Sciences, 21(1), 290. doi:10.3390/ijms21010290Giovannoni, J. J., Wing, R. A., Ganal, M. W., & Tanksley, S. D. (1991). Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Research, 19(23), 6553-6568. doi:10.1093/nar/19.23.6553Grover, A. (2012). Plant Chitinases: Genetic Diversity and Physiological Roles. Critical Reviews in Plant Sciences, 31(1), 57-73. doi:10.1080/07352689.2011.616043Gu, S.-Y., Wang, L.-C., Cheuh, C.-M., & Lo, W.-S. (2019). CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00600Guo, H., & Ecker, J. R. (2003). Plant Responses to Ethylene Gas Are Mediated by SCFEBF1/EBF2-Dependent Proteolysis of EIN3 Transcription Factor. Cell, 115(6), 667-677. doi:10.1016/s0092-8674(03)00969-3Guo, S., Zhao, S., Sun, H., Wang, X., Wu, S., Lin, T., … Xu, Y. (2019). Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nature Genetics, 51(11), 1616-1623. doi:10.1038/s41588-019-0518-4Gur, A., Tzuri, G., Meir, A., Sa’ar, U., Portnoy, V., Katzir, N., … Tadmor, Y. (2017). Genome-Wide Linkage-Disequilibrium Mapping to the Candidate Gene Level in Melon (Cucumis melo). Scientific Reports, 7(1). doi:10.1038/s41598-017-09987-4Hermans, C., Porco, S., Verbruggen, N., & Bush, D. R. (2009). Chitinase-Like Protein CTL1 Plays a Role in Altering Root System Architecture in Response to Multiple Environmental Conditions      . Plant Physiology, 152(2), 904-917. doi:10.1104/pp.109.149849Hou, J., Zhou, Y.-F., Gao, L.-Y., Wang, Y.-L., Yang, L.-M., Zhu, H.-Y., … Hu, J.-B. (2018). Dissecting the Genetic Architecture of Melon Chilling Tolerance at the Seedling Stage by Association Mapping and Identification of the Elite Alleles. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01577Hu, B., Li, D., Liu, X., Qi, J., Gao, D., Zhao, S., … Yang, L. (2017). Engineering Non-transgenic Gynoecious Cucumber Using an Improved Transformation Protocol and Optimized CRISPR/Cas9 System. Molecular Plant, 10(12), 1575-1578. doi:10.1016/j.molp.2017.09.005Ji, G., Zhang, J., Gong, G., Shi, J., Zhang, H., Ren, Y., … Xu, Y. (2015). Inheritance of sex forms in watermelon (Citrullus lanatus). Scientia Horticulturae, 193, 367-373. doi:10.1016/j.scienta.2015.07.039Ji, G., Zhang, J., Zhang, H., Sun, H., Gong, G., Shi, J., … Xu, Y. (2016). Mutation in the gene encoding 1-aminocyclopropane-1-carboxylate synthase 4 (CitACS4 ) led to andromonoecy in watermelon. Journal of Integrative Plant Biology, 58(9), 762-765. doi:10.1111/jipb.12466Knopf, R. R., & Trebitsh, T. (2006). The Female-Specific Cs-ACS1G Gene of Cucumber. A Case of Gene Duplication and Recombination between the Non-Sex-Specific 1-Aminocyclopropane-1-Carboxylate Synthase Gene and a Branched-Chain Amino Acid Transaminase Gene. Plant and Cell Physiology, 47(9), 1217-1228. doi:10.1093/pcp/pcj092Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.xLevi, A., Jarret, R., Kousik, S., Patrick Wechter, W., Nimmakayala, P., & Reddy, U. K. (2017). Genetic Resources of Watermelon. Plant Genetics and Genomics: Crops and Models, 87-110. doi:10.1007/7397_2016_34Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, M.-X., Yeung, J. M. Y., Cherny, S. S., & Sham, P. C. (2011). Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Human Genetics, 131(5), 747-756. doi:10.1007/s00439-011-1118-2Lai, Y.-S., Shen, D., Zhang, W., Zhang, X., Qiu, Y., Wang, H., … Li, X. (2018). Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1490-3Li, Z., Han, Y., Niu, H., Wang, Y., Jiang, B., & Weng, Y. (2020). Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent Femaleness (F) locus. Horticulture Research, 7(1). doi:10.1038/s41438-020-0251-2Lin, C.-K., Lee, N.-Y., Huang, P.-L., & Do, Y.-Y. (2015). Gene structure and expression characteristics of the auxin receptor TIR1 ortholog in Momordica charantia and developmental analysis of its promoter in transgenic plants. Journal of Plant Biochemistry and Biotechnology, 25(3), 253-262. doi:10.1007/s13562-015-0336-4Lotan, T., Ori, N., & Fluhr, R. (1989). Pathogenesis-related proteins are developmentally regulated in tobacco flowers. The Plant Cell, 1(9), 881-887. doi:10.1105/tpc.1.9.881Mansfeld, B. N., & Grumet, R. (2018). QTLseqr: An R Package for Bulk Segregant Analysis with Next‐Generation Sequencing. The Plant Genome, 11(2), 180006. doi:10.3835/plantgenome2018.01.0006Manzano, S., Martínez, C., García, J. M., Megías, Z., & Jamilena, M. (2014). Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus). Plant Physiology and Biochemistry, 85, 96-104. doi:10.1016/j.plaphy.2014.11.004Manzano, S., Aguado, E., Martínez, C., Megías, Z., García, A., & Jamilena, M. (2016). The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus). PLOS ONE, 11(5), e0154362. doi:10.1371/journal.pone.0154362Mara, C. D., & Irish, V. F. (2008). Two GATA Transcription Factors Are Downstream Effectors of Floral Homeotic Gene Action in Arabidopsis    . Plant Physiology, 147(2), 707-718. doi:10.1104/pp.107.115634Martin, A., Troadec, C., Boualem, A., Rajab, M., Fernandez, R., Morin, H., … Bendahmane, A. (2009). A transposon-induced epigenetic change leads to sex determination in melon. Nature, 461(7267), 1135-1138. doi:10.1038/nature08498Martínez, C., Manzano, S., Megías, Z., Barrera, A., Boualem, A., Garrido, D., … Jamilena, M. (2014). Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta, 239(6), 1201-1215. doi:10.1007/s00425-014-2043-0Matsumoto, N. (2001). A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers. Genes & Development, 15(24), 3355-3364. doi:10.1101/gad.931001Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828-9832. doi:10.1073/pnas.88.21.9828Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321Nimmakayala, P., Tomason, Y. R., Abburi, V. L., Alvarado, A., Saminathan, T., Vajja, V. G., … Reddy, U. K. (2016). Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01437Oren, E., Tzuri, G., Vexler, L., Dafna, A., Meir, A., Faigenboim, A., … Gur, A. (2019). The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. Journal of Experimental Botany, 70(15), 3781-3794. doi:10.1093/jxb/erz182Paris, H. S. (2015). Origin and emergence of the sweet dessert watermelon,Citrullus lanatus. Annals of Botany, 116(2), 133-148. doi:10.1093/aob/mcv077POOLE, C. F., & GRIMBALL, P. C. (1939). INHERITANCE OF NEW SEX FORMS IN CUCUMIS MELO L. Journal of Heredity, 30(1), 21-25. doi:10.1093/oxfordjournals.jhered.a104626Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., & Genschik, P. (2003). EIN3-Dependent Regulation of Plant Ethylene Hormone Signaling by Two Arabidopsis F Box Proteins. Cell, 115(6), 679-689. doi:10.1016/s0092-8674(03)00968-1Prothro, J., Abdel-Haleem, H., Bachlava, E., White, V., Knapp, S., & McGregor, C. (2013). Quantitative Trait Loci Associated with Sex Expression in an Inter-subspecific Watermelon Population. Journal of the American Society for Horticultural Science, 138(2), 125-130. doi:10.21273/jashs.138.2.125Pujol, M., Alexiou, K. G., Fontaine, A.-S., Mayor, P., Miras, M., Jahrmann, T., … Aranda, M. A. (2019). Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber (Cucumis sativus L.) by Using BSA-seq Analysis. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01583Qiao, H., Chang, K. N., Yazaki, J., & Ecker, J. R. (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes & Development, 23(4), 512-521. doi:10.1101/gad.1765709Reichheld, J. P., Riondet, C., Delorme, V., Vignols, F., & Meyer, Y. (2010). Thioredoxins and glutaredoxins in development. Plant Science, 178(5), 420-423. doi:10.1016/j.plantsci.2010.03.001Renner, S. S., Chomicki, G., & Greuter, W. (2014). (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon, 63(4), 941-942. doi:10.12705/634.29Rosa, J. T. (1928). The inheritance of flower types inCucumisandCitrullus. Hilgardia, 3(9), 233-250. doi:10.3733/hilg.v03n09p233Salman-Minkov, A., Levi, A., Wolf, S., & Trebitsh, T. (2008). ACC Synthase Genes are Polymorphic in Watermelon (Citrullus spp.) and Differentially Expressed in Flowers and in Response to Auxin and Gibberellin. Plant and Cell Physiology, 49(5), 740-750. doi:10.1093/pcp/pcn045Sanders, P. M., Bui, A. Q., Weterings, K., McIntire, K. N., Hsu, Y.-C., Lee, P. Y., … Goldberg, R. B. (1999). Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sexual Plant Reproduction, 11(6), 297-322. doi:10.1007/s004970050158Singh, S., Yadav, S., Singh, A., Mahima, M., Singh, A., Gautam, V., & Sarkar, A. K. (2019). Auxin signaling modulates LATERAL ROOT PRIMORDIUM 1 ( LRP 1 ) expression during lateral root development in Arabidopsis. The Plant Journal, 101(1), 87-100. doi:10.1111/tpj.14520Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., … Terauchi, R. (2013). QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74(1), 174-183. doi:10.1111/tpj.12105Takakura, Y., Ito, T., Saito, H., Inoue, T., Komari, T., & Kuwata, S. (2000). Plant Molecular Biology, 42(6), 883-897. doi:10.1023/a:1006401816145Tan, J., Tao, Q., Niu, H., Zhang, Z., Li, D., Gong, Z., … Li, Z. (2015). A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 128(12), 2483-2493. doi:10.1007/s00122-015-2603-0Trebitsh, T., Staub, J. E., & O’Neill, S. D. (1997). Identification of a 1-Aminocyclopropane-1-Carboxylic Acid Synthase Gene Linked to the Female (F) Locus That Enhances Female Sex Expression in Cucumber. Plant Physiology, 113(3), 987-995. doi:10.1104/pp.113.3.987Vandenbussche, M., Horstman, A., Zethof, J., Koes, R., Rijpkema, A. S., & Gerats, T. (2009). Differential Recruitment ofWOXTranscription Factors for Lateral Development and Organ Fusion in Petunia andArabidopsis . The Plant Cell, 21(8), 2269-2283. doi:10.1105/tpc.109.065862Wang, X., Bao, K., Reddy, U. K., Bai, Y., Hammar, S. A., Jiao, C., … Fei, Z. (2018). The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horticulture Research, 5(1). doi:10.1038/s41438-018-0080-8Wehner, T. C. (s. f.). Watermelon. Vegetables I, 381-418. doi:10.1007/978-0-387-30443-4_12Wu, S., Wang, X., Reddy, U., Sun, H., Bao, K., Gao, L., … Fei, Z. (2019). Genome of ‘Charleston Gray’, the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Plant Biotechnology Journal, 17(12), 2246-2258. doi:10.1111/pbi.13136Xing, S., & Zachgo, S. (2008). ROXY1 and ROXY2, two Arabidopsis glutaredoxin genes, are required for anther development. The Plant Journal, 53(5), 790-801. doi:10.1111/j.1365-313x.2007.03375.xXing, L., Li, Z., Khalil, R., Ren, Z., & Yang, Y. (2011). Functional identification of a novel F-box/FBA gene in tomato. Physiologia Plantarum, 144(2), 161-168. doi:10.1111/j.1399-3054.2011.01543.xYagcioglu, M., Gulsen, O., Yetisir, H., Solmaz, I., & Sari, N. (2016). Preliminary studies of genom-wide association mapping for some selected morphological characters of watermelons. Scientia Horticulturae, 210, 277-284. doi:10.1016/j.scienta.2016.08.001Yu, L. P., Miller, A. K., & Clark, S. E. (2003). POLTERGEIST Encodes a Protein Phosphatase 2C that Regulates CLAVATA Pathways Controlling Stem Cell Identity at Arabidopsis Shoot and Flower Meristems. Current Biology, 13(3), 179-188. doi:10.1016/s0960-9822(03)00042-3Yu, H., Wu, J., Xu, N., & Peng, M. (2007). Roles of F-box Proteins in Plant Hormone Responses. Acta Biochimica et Biophysica Sinica, 39(12), 915-922. doi:10.1111/j.1745-7270.2007.00358.xZhang, Z., Mao, L., Chen, H., Bu, F., Li, G., Sun, J., … Huang, S. (2015). Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber. The Plant Cell, 27(6), 1595-1604. doi:10.1105/tpc.114.135848ZHANG, J., SHI, J., JI, G., ZHA

    Searching for Black Hole Candidates by LAMOST and ASAS-SN

    Get PDF
    Most dynamically confirmed stellar-mass black holes (BHs) and their candidates were originally selected from X-ray outbursts. In the present work, we search for BH candidates in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey using the spectra along with photometry from the All Sky Automated Survey for SuperNovae (ASAS-SN), where the orbital period of the binary may be revealed by the periodic light curve, such as the ellipsoidal modulation type. Our sample consists of nine binaries, where each source contains a giant star with large radial velocity variation (ΔV_R ≳ 70 km s^(-1)) and periods known from light curves. We focus on the nine sources with long periods (T_(ph) > 5 days) and evaluate the mass M_2 of the optically invisible companion. Since the observed ΔV_R from only a few repeating spectroscopic observations is a lower limit of the real amplitude, the real mass M_2 can be significantly higher than the current evaluation. It is likely an efficient method to place constraints on M 2 by combining ΔV_R from LAMOST and T_(ph) from ASAS-SN, particularly by the ongoing LAMOST Medium Resolution Survey
    corecore