62 research outputs found

    The SST-1M camera for the Cherenkov Telescope Array

    Get PDF
    The prototype camera of the single-mirror Small Size Telescopes (SST-1M) proposed for the Cherenkov Telescope Array (CTA) project has been designed to be very compact and to deliver high performance over thirty years of operation. The camera is composed of an hexagonal photo-detection plane made of custom designed large area hexagonal silicon photomultipliers and a high throughput, highly configurable, fully digital readout and trigger system (DigiCam). The camera will be installed on the telescope structure at the H. Niewodnicza{\'n}ski institute of Nuclear Physics in Krakow in fall 2015. In this contribution, we review the steps that led to the development of the innovative photo-detection plane and readout electronics, and we describe the test and calibration strategy adopted.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.05894; Full consortium author list at http://cta-observatory.or

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA

    Binding-site mutations in the alpha 1 subunit of the inhibitory glycine receptor convert the inhibitory metal ion Cu2+ into a positive modulator

    No full text
    The divalent cation copper (Cu2+) has been shown to inhibit chloride currents mediated by the inhibitory glycine receptor (GlyR). Here, we analyzed Cu2+ inhibition of homo- and hetero-oligomeric GlyRs expressed in Xenopus oocytes. No significant differences in Cu2+ inhibitory potency were found between alpha1, alpha2 and alpha3 GlyRs as well as heteromeric alpha1beta receptors. Furthermore, GlyR alpha1 mutations known to reduce inhibition or potentiation of GlyR currents by Zn2+ had no effect on Cu2+ inhibition. However, Cu2+ was found to competitively antagonize glycine binding, suggesting that Cu2+ binds at the agonist-binding site. Mutations within the glycine-binding site of the GlyR alpha1 subunit reduced the inhibitory potency of Cu2+ and led to an up to 4-fold potentiation of glycine-elicited currents by Cu2+. Molecular dynamics simulation suggests this to be due to increased Cu2+ binding energies. Our data show that GlyR binding-site mutations can convert inhibitors of agonist binding into highly effective positive modulators

    Different binding modes of tropeines mediating inhibition and potentiation of alpha 1 glycine receptors

    No full text
    Tropeines are bidirectional modulators of native and recombinant glycine receptors (GlyRs) and promising leads for the development of novel modulatory agents. Tropisetron potentiates and inhibits agonist-triggered GlyR currents at femto- to nanomolar and micromolar concentrations respectively. Here, the potentiating and inhibitory effects of another tropeine, 3alpha-(3'-methoxy-benzoyloxy)nortropane (MBN) were examined by voltage-clamp electrophysiology at wild type and mutant alpha1 GlyRs expressed in Xenopus laevis oocytes. Several substitutions around the agonist-binding cavity of the alpha1 subunit interface (N46C, F63A, N102A, R119K, R131A, E157C, K200A, Y202L and F207A) were found to reduce or eliminate MBN inhibition of glycine activation. In contrast, the binding site mutations Q67A, R119A and S129A which did not affect MBN inhibition abolished the potentiation of chloride currents elicited by low concentrations of the partial agonist taurine following pre-incubation with MBN. Thus, potentiation and inhibition involve distinct binding modes of MBN in the inter-subunit agonist-binding pocket of alpha1 GlyRs. Homology modelling and molecular dynamics simulations disclosed two distinct docking modes for MBN, which are consistent with the differential effects of individual binding site substitutions on MBN inhibition and potentiation respectively. Together these results suggest that distinct binding modes at adjacent binding sites located within the agonist-binding pocket of the GlyR mediate the bidirectional modulatory effects of tropeines
    corecore