47 research outputs found

    Self-perception but not peer reputation of bullying victimization is associated with non-clinical psychotic experiences in adolescents

    Get PDF
    Background Bullying victimization may be linked to psychosis but only self-report measures of victimization have been used so far. This study aimed (a) to investigate the differential associations of peer-nominated versus self-reported victim status with non-clinical psychotic experiences in a sample of young adolescents, and (b) to examine whether different types of self-reported victimization predict non-clinical psychotic experiences in these adolescents. Method A combination of standard self-report and peer nomination procedures was used to assess victimization. The sample (n = 724) was divided into four groups (exclusively self-reported victims, self- and peer-reported victims, exclusively peer-reported victims, and non-victims) to test for a group effect on non-clinical psychotic experiences. The relationship between types of victimization and non-clinical psychotic experiences was examined by a regression analysis. Results Self-reported victims, along with self- and peer-reported victims, scored higher than peer-reported victims and non-victims on non-clinical psychotic experiences. Self-reports of direct relational, indirect relational and physical victimization significantly improved the prediction of non-clinical psychotic experiences whereas verbal and possession-directed victimization had no significant predictive value. Conclusions The relationship between victimization and non-clinical psychotic experiences is only present for self-reported victimization, possibly indicative of an interpretation bias. The observed discrepancy between self-report and peer-report highlights the importance of implementing a combination of both measures for future research. Copyright © Cambridge University Press 2012

    Optimization of tube voltage in X-ray dark-field chest radiography

    Get PDF
    Grating-based X-ray dark-field imaging is a novel imaging modality which has been refined during the last decade. It exploits the wave-like behaviour of X-radiation and can nowadays be implemented with existing X-ray tubes used in clinical applications. The method is based on the detection of small-angle X-ray scattering, which occurs e.g. at air-tissue-interfaces in the lung or bone-fat interfaces in spongy bone. In contrast to attenuation-based chest X-ray imaging, the optimal tube voltage for dark-field imaging of the thorax has not yet been examined. In this work, dark-field scans with tube voltages ranging from 60 to 120 kVp were performed on a deceased human body. We analyzed the resulting images with respect to subjective and objective image quality, and found that the optimum tube voltage for dark-field thorax imaging at the used setup is at rather low energies of around 60 to 70 kVp. Furthermore, we found that at these tube voltages, the transmission radiographs still exhibit sufficient image quality to correlate dark-field information. Therefore, this study may serve as an important guideline for the development of clinical dark-field chest X-ray imaging devices for future routine use

    In-vivo X-ray Dark-Field Chest Radiography of a Pig

    Get PDF
    X-ray chest radiography is an inexpensive and broadly available tool for initial assessment of the lung in clinical routine, but typically lacks diagnostic sensitivity for detection of pulmonary diseases in their early stages. Recent X-ray dark-field (XDF) imaging studies on mice have shown significant improvements in imaging-based lung diagnostics. Especially in the case of early diagnosis of chronic obstructive pulmonary disease (COPD), XDF imaging clearly outperforms conventional radiography. However, a translation of this technique towards the investigation of larger mammals and finally humans has not yet been achieved. In this letter, we present the first in-vivo XDF full-field chest radiographs (32 × 35 cm²) of a living pig, acquired with clinically compatible parameters (40s scan time, approx. 80 μSv dose). For imaging, we developed a novel high-energy XDF system that overcomes the limitations of currently established setups. Our XDF radiographs yield sufficiently high image quality to enable radiographic evaluation of the lungs. We consider this a milestone in the bench-to-bedside translation of XDF imaging and expect XDF imaging to become an invaluable tool in clinical practice, both as a general chest X-ray modality and as a dedicated tool for high-risk patients affected by smoking, industrial work and indoor cooking

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    The European language technology landscape in 2020 : language-centric and human-centric AI for cross-cultural communication in multilingual Europe

    Get PDF
    Multilingualism is a cultural cornerstone of Europe and firmly anchored in the European treaties including full language equality. However, language barriers impacting business, cross-lingual and cross-cultural communication are still omnipresent. Language Technologies (LTs) are a powerful means to break down these barriers. While the last decade has seen various initiatives that created a multitude of approaches and technologies tailored to Europe’s specific needs, there is still an immense level of fragmentation. At the same time, AI has become an increasingly important concept in the European Information and Communication Technology area. For a few years now, AI – including many opportunities, synergies but also misconceptions – has been overshadowing every other topic. We present an overview of the European LT landscape, describing funding programmes, activities, actions and challenges in the different countries with regard to LT, including the current state of play in industry and the LT market. We present a brief overview of the main LT-related activities on the EU level in the last ten years and develop strategic guidance with regard to four key dimensions
    corecore