15 research outputs found
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia
Beliefs—attitudes toward some state of the environment—guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia
Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex
Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits
Paranoia and Belief Updating During the COVID-19 Crisis
The COVID-19 pandemic has made the world seem less predictable. Such crises can lead people to feel that others are a threat. Here, we show that the initial phase of the pandemic in 2020 increased individuals’ paranoia and rendered their belief updating more erratic. A proactive lockdown rendered people’s belief updating less capricious. However, state-mandated mask wearing increased paranoia and induced more erratic behaviour. This was most evident in states where adherence to mask wearing rules was poor but where rule following is typically more common. Computational analyses of participant behaviour suggested that people with higher paranoia expected the task to be more unstable. People who were more paranoid endorsed conspiracies about mask-wearing and potential vaccines, as well as the QAnon conspiracy theory. These beliefs were associated with erratic task behaviour and changed priors. Taken together, we find that real-world uncertainty increases paranoia and influences laboratory task behaviour
Paranoia and belief updating during the COVID-19 crisis
The COVID-19 pandemic has made the world seem less predictable. Such crises can lead people to feel that others are a threat. Here, we show that the initial phase of the pandemic in 2020 increased individuals' paranoia and made their belief updating more erratic. A proactive lockdown made people's belief updating less capricious. However, state-mandated mask-wearing increased paranoia and induced more erratic behaviour. This was most evident in states where adherence to mask-wearing rules was poor but where rule following is typically more common. Computational analyses of participant behaviour suggested that people with higher paranoia expected the task to be more unstable. People who were more paranoid endorsed conspiracies about mask-wearing and potential vaccines and the QAnon conspiracy theories. These beliefs were associated with erratic task behaviour and changed priors. Taken together, we found that real-world uncertainty increases paranoia and influences laboratory task behaviour
In the blink of an eye: relating positive-feedback sensitivity to striatal dopamine D2-like receptors through blink rate.
For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors