356 research outputs found

    El gas molecular en las galaxias luminosas y ultraluminosas en el infrarrojo

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 13-03-0

    Molecular line probes of activity in galaxies

    Full text link
    The use of specific tracers of the dense molecular gas phase can help to explore the feedback of activity on the interstellar medium (ISM) in galaxies. This information is a key to any quantitative assessment of the efficiency of the star formation process in galaxies. We present the results of a survey devoted to probe the feedback of activity through the study of the excitation and chemistry of the dense molecular gas in a sample of local universe starbursts and active galactic nuclei (AGNs). Our sample includes also 17 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). From the analysis of the LIRGs/ULIRGs subsample, published in Gracia-Carpio et al.(2007) we find the first clear observational evidence that the star formation efficiency of the dense gas, measured by the L_FIR/L_HCN ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies. Mounting evidence of overabundant HCN in active environments would even reinforce the reported trend, pointing to a significant turn upward in the Kennicutt-Schmidt law around L_FIR=10^11 L_sun. This result has major implications for the use of HCN as a tracer of the dense gas in local and high-redshift luminous infrared galaxies.Comment: 4 pages, 2 figures, contributed paper to Far-Infrared Workshop 07 (FIR 2007

    Evolution of the ISM in Luminous IR Galaxies

    Full text link
    Molecules that trace the high-density regions of the interstellar medium may be used to evaluate the changing physical and chemical environment during the ongoing nuclear activity in (Ultra-)Luminous Infrared Galaxies. The changing ratios of the HCN(1-0), HNC(1-0), HCO+(1-0), CN(1-0) and CN(2-1), and CS(3-2) transitions were compared with the HCN(1-0)/CO(1-0) ratio, which is proposed to represent the progression time scale of the starburst. These diagnostic diagrams were interpreted using the results of theoretical modeling using a large physical and chemical network to describe the state of the nuclear ISM in the evolving galaxies. Systematic changes are seen in the line ratios as the sources evolve from early stage for the nuclear starburst (ULIRGs) to later stages. These changes result from changing environmental conditions and particularly from the lowering of the average density of the medium. A temperature rise due to mechanical heating of the medium by feedback explains the lowering of the ratios at later evolutionary stages. Infrared pumping may affect the CN and HNC line ratios during early evolutionary stages. Molecular transitions display a behavior that relates to changes of the environment during an evolving nuclear starburst. Molecular properties may be used to designate the evolutionary stage of the nuclear starburst. The HCN(1-0)/CO(1-0) and HCO+(1-0)/HCN(1-0) ratios serve as indicators of the time evolution of the outburst.Comment: To be published in Astronomy and Astrophysics - 11 pages, 9 figures, 1 tabl

    Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    Full text link
    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table

    Modelling the Molecular Gas in NGC 6240

    Full text link
    We present the first observations of H13^{13}CN(10)(1-0), H13^{13}CO+(10)^+(1-0) and SiO(21)(2-1) in NGC\,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass-luminosity conversion factors. We find 1010M\sim10^{10}M_\odot of dense molecular gas in cold, dense clouds (Tk10T_{\rm k}\sim10\,K, nH2106n_{{\rm H}_2}\sim10^6\,cm3^{-3}) with a volume filling factor <0.002<0.002, embedded in a shock heated molecular medium (Tk2000T_{\rm k}\sim2000\,K, nH2103.6n_{{\rm H}_2}\sim10^{3.6}\,cm3^{-3}), both surrounded by an extended diffuse phase (Tk200T_{\rm k}\sim200\,K, nH2102.5n_{{\rm H}_2}\sim10^{2.5}\,cm3^{-3}). We derive a global αCO=1.51.17.1\alpha_{\rm CO}=1.5^{7.1}_{1.1} with gas masses log10(M/[M])=10.110.010.8\log_{10}\left(M / [M_\odot]\right)=10.1_{10.0}^{10.8}, dominated by the dense gas. We also find αHCN=321389\alpha_{\rm HCN} = 32^{89}_{13}, which traces the cold, dense gas. The [12^{12}C]/[13^{13}C] ratio is only slightly elevated (986523098^{230}_{65}), contrary to the very high [CO]/[13^{13}CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H13^{13}CN] and [HCO+^+]/[H13^{13}CO+^+] abundance ratios (300200500)(300^{500}_{200}) which we attribute to isotope fractionation in the cold, dense clouds.Comment: 27 pages, 17 figures, 9 tables. Accepted in Ap

    Sub-arcsecond CO(1-0) and CO(2-1) observations of the ultraluminous infrared galaxy IRAS 10190+1322

    Full text link
    We present the results of high resolution mapping of the CO(1-0) and CO(2-1) emission of the ultraluminous infrared galaxy (ULIRG) IRAS 10190+1322, with the IRAM interferometer, down to an angular resolution of ~0.3 arcsec. This object is composed of two interacting galaxies with a projected nuclear separation of 6 kpc, and was selected to analyze the physical and dynamical properties of the molecular gas in each galaxy in order to study the conditions that lead a galaxy pair to become ultraluminous in the infrared. With the exception of Arp 220, the closest ULIRG, this is the first time that the CO emission is morphologically and kinematically resolved in the two interacting galaxies of a ULIRG system. In one of the galaxies the molecular gas is highly concentrated, distributed in a circumnuclear disk of 1.7 kpc in size. The molecular gas in the presumably less infrared luminous galaxy is distributed in a more extended disk of 7.4 kpc. The molecular gas mass accounts for ~10% of the dynamical mass in each galaxy. Both objects are rich enough in molecular gas, Mgas ~ 4 10^9 Msun, as to experience an infrared ultraluminous phase.Comment: 4 pages, 3 figures. Accepted for publication in A&A Letters Special Issue for the new extended configuration of the Plateau de Bure Interferomete

    First detections of the [NII] 122 {\mu}m line at high redshift: Demonstrating the utility of the line for studying galaxies in the early universe

    Get PDF
    We report the first detections of the [NII] 122 {\mu}m line from a high redshift galaxy. The line was strongly (> 6{\sigma}) detected from SMMJ02399-0136, and H1413+117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are ~7.0\times10^{-4} (Cloverleaf) and 2.1\times10^{-3} (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, ~8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [OIII] 88 {\mu}m line, the [OIII]/[NII] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of ~200 M82 like starbursts accounting for all of the FIR emission and 43% of the [NII] line. The remainder may come from the NLR. This work demonstrates the utility of the [NII] and [OIII] lines in constraining properties of the ionized medium.Comment: Accepted for publication in ApJ Letters; 16 pages, 2 tables, 3 figure

    Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220

    Get PDF
    We present the results of interferometric spectral line observations of Arp 220 at 3.5mm and 1.2mm from the Plateau de Bure Interferometer (PdBI), imaging the two nuclear disks in H13^{13}CN(10)(1 - 0) and (32)(3 - 2), H13^{13}CO+(10)^+(1 - 0) and (32)(3 - 2), and HN13^{13}C(32)(3 - 2) as well as SiO(21)(2 - 1) and (65)(6 - 5), HC15^{15}N(32)(3 - 2), and SO(6655)(6_6 - 5_5). The gas traced by SiO(65)(6 - 5) has a complex and extended kinematic signature including a prominent P Cygni profile, almost identical to previous observations of HCO+(32)^+(3 - 2). Spatial offsets 0.10.1'' north and south of the continuum centre in the emission and absorption of the SiO(65)(6 - 5) P Cygni profile in the western nucleus (WN) imply a bipolar outflow, delineating the northern and southern edges of its disk and suggesting a disk radius of 40\sim40 pc, consistent with that found by ALMA observations of Arp 220. We address the blending of SiO(65)(6 - 5) and H13^{13}CO+(32)^+(3 - 2) by considering two limiting cases with regards to the H13^{13}CO+^+ emission throughout our analysis. Large velocity gradient (LVG) modelling is used to constrain the physical conditions of the gas and to infer abundance ratios in the two nuclei. Our most conservative lower limit on the [H13^{13}CN]/[H13^{13}CO+^+] abundance ratio is 11 in the WN, cf. 0.10 in the eastern nucleus (EN). Comparing these ratios to the literature we argue on chemical grounds for an energetically significant AGN in the WN driving either X-ray or shock chemistry, and a dominant starburst in the EN.Comment: 28 pages, 17 figures, accepted to Ap

    Spectroscopic FIR mapping of the disk and galactic wind of M82 with Herschel-PACS

    Full text link
    [Abridged] We present maps of the main cooling lines of the neutral atomic gas ([OI] at 63 and 145 micron and [CII] at 158 micron) and in the [OIII] 88 micron line of the starburst galaxy M82, carried out with the PACS spectrometer on board the Herschel satellite. By applying PDR modeling we derive maps of the main ISM physical parameters, including the [CII] optical depth, at unprecedented spatial resolution (~300 pc). We can clearly kinematically separate the disk from the outflow in all lines. The [CII] and [OI] distributions are consistent with PDR emission both in the disk and in the outflow. Surprisingly, in the outflow, the atomic and the ionized gas traced by the [OIII] line both have a deprojected velocity of ~75 km/s, very similar to the average velocity of the outflowing cold molecular gas (~ 100 km/s) and several times smaller than the outflowing material detected in Halpha (~ 600 km/s). This suggests that the cold molecular and neutral atomic gas and the ionized gas traced by the [OIII] 88 micron line are dynamically coupled to each other but decoupled from the Halpha emitting gas. We propose a scenario where cold clouds from the disk are entrained into the outflow by the winds where they likely evaporate, surviving as small, fairly dense cloudlets (n_H\sim 500-1000 cm^-3, G_0\sim 500- 1000, T_gas\sim300 K). We show that the UV photons provided by the starburst are sufficient to excite the PDR shells around the molecular cores. The mass of the neutral atomic gas in the outflow is \gtrsim 5-12x 10^7 M_sun to be compared with that of the molecular gas (3.3 x 10^8 M_sun) and of the Halpha emitting gas (5.8 x 10^6 M_sun). The mass loading factor, (dM/dt)/SFR, of the molecular plus neutral atomic gas in the outflow is ~ 2. Energy and momentum driven outflow models can explain the data equally well, if all the outflowing gas components are taken into account.Comment: 26 pages, 23 figures, 4 Tables, Accepted for publication in Astronomy & Astrophysic
    corecore