56 research outputs found

    On the circulation in the upper layer of the western equatorial Atlantic

    Full text link

    Impact of the equatorial deep jets on estimates of zonal transports in the Atlantic

    No full text
    The structure and variability of the zonal equatorial flow in the Atlantic is studied on the basis of velocity profiles obtained with lowered Acoustic Doppler Current Profilers during multiple surveys. The vertical extent of the zonal currents is found to vary considerably. It can be as small as 100 m or as large as 1000 m. In the Atlantic, vertical scales of 400-600 m have been associated with the equatorial deep jets (they are also frequently called deep jets or stacked jets). Typical amplitudes of the zonal velocity are about 20 cm s(-1). An analysis of quasi-synoptic surveys indicates that the zonal extent of most jets is likely to be at least 27°. They can rise or deepen from west to east, although the deepening was observed more often and is often more pronounced. The west to east deepening can be as large as 320 m/10°. Basin-wide mean depth changes of the jets are mostly on the order of 50 m/10°, and the largest depth changes are typically observed between 35° and 23° W. The existence of these changes indicates that vertically propagating, equatorially trapped, waves might be one cause for the jet structure. However, the dependence of the slope on the longitude indicates that other processes must be involved as well. The typical vertical extent of the jets is small enough to result in several direction changes of the zonal flow in the Antarctic Intermediate Water (AAIW) and the North Atlantic Deep Water (NADW) layer. From transport estimates for 14 meridional sections it is found that the transport for the westward component of the flow within the AAIW layer (500-1000 m) can be as large as -24 Sv (1 Sv = 10(6) M, s(-1)) within 1° of the equator. For the eastward component of the flow in the AAIW layer the transport can be as large as 8 Sv. Adding the transport components for each section results in a range of total AAIW transports from -24 to 7 Sv. This suggest that the annual mean transport of AAIW is westward. The only months with eastward total transports are June and July. This is consistent with earlier Lagrangian and some other observations that indicated that the AAIW flow along the equator is governed by an annual cycle. In the NADW layer (1200-3900 m) the transport for the westward (eastward) flow can be as large as -25 Sv (23 Sv) within 1° of the equator. This results in a range of total NADW transports from -10 to 18 Sv. The variations of the total transports of AAIW and NADW are anti-correlated, with a correlation coefficient of -0.86. Since only eight sections reached deep enough to allow transport estimates in the NADW layer it is more difficult to come to a conclusion about the mean transport in this layer than for the transport in the AAIW layer (for the latter layer 14 sections were available). Nevertheless, the obtained estimates suggest that the total NADW transport may be eastward. Published by Elsevier Ltd

    High-sensitivity calcium biosensor on the mitochondrial surface reveals that IP3R channels participate in the reticular Ca2+ leak towards mitochondria

    No full text
    International audienceGenetically encoded biosensors based on fluorescent proteins (FPs) are widely used to monitor dynamics and sub-cellular spatial distribution of calcium ion (Ca2+) fluxes and their role in intracellular signaling pathways. The development of different mutations in the Ca2+-sensitive elements of the cameleon probes has allowed sensitive range of Ca2+ measurements in almost all cellular compartments. Region of the endoplasmic reticulum (ER) tethered to mitochondria, named as the mitochondrial-associated membranes (MAMs), has received an extended attention since the last 5 years. Indeed, as MAMs are essential for calcium homeostasis and mitochondrial function, molecular tools have been developed to assess quantitatively Ca2+ levels in the MAMs. However, sensitivity of the first generation Ca2+ biosensors on the surface of the outer-mitochondrial membrane (OMM) do not allow to measure μM or sub-μM changes in Ca2+ concentration which prevents to measure the native activity (unstimulated exogenously) of endogenous channels. In this study, we assembled a new ratiometric highly sensitive Ca2+ biosensor expressed on the surface of the outer-mitochondrial membrane (OMM). It allows the detection of smaller differences than the previous biosensor in or at proximity of the MAMs. Noteworthy, we demonstrated that IP3-receptors have an endogenous activity which participate to the Ca2+ leak channel on the surface of the OMM during hypoxia or when SERCA activity is blocked

    A comparison of kinematic evidence for tropical cells in the Atlantic and Pacific oceans.

    No full text
    International audienceKinematic evidence for the existence of Tropical Cells (TC) in the Atlantic Ocean is offered. Mean sections of meridional velocity, its horizontal divergence and vertical velocity are estimated from twelve available sections centered at about 35°W. Of the twelve sections, six were occupied in March and April, thus there is a boreal spring bias to the observations. Equatorial upwelling and offequatorial downwelling, between 3°N and 6°N, represent the southern and northern boundaries of a northern hemisphere TC. Uncertainties for the estimates of average quantities are large. However, favorable comparisons with observational representations of Pacific TC's provide support for the existence of a northern hemisphere Atlantic TC

    Lactobacilli intra-tracheal administration protects from Pseudomonas aeruginosa pulmonary infection in mice - a proof of concept

    No full text
    WOS:000501544400007International audienceThe spreading of antibiotic resistance is a major public health issue, which requires alternative treatments to antibiotics. Lactobacilli have shown abilities to prevent pneumonia in clinical studies when given by oral route, certainly through the gut-lung axis involvement. Rationally, respiratory administration of lactobacilli has been developed and studied in murine model, to prevent from respiratory pathogens. It allows a direct effect of probiotics into the respiratory system. To our knowledge, no study has ever focused on the effect of probiotic intra-respiratory administration to prevent from Pseudomonas aeruginosa (PA) pneumonia, a major respiratory pathogen associated with high morbidity rates. In this study, we evaluated the beneficial activity of three Lactobacillus strains (Lactobacillus fermentum K.C6.3.1E, Lactobacillus zeae Od.76, Lactobacillus paracasei ES.D.88) previously screened by ourselves and known to be particularly efficient in vitro in inhibiting PAO1 virulence factors. Cytotoxic assays in alveolar epithelial cell line A549 were performed, followed by the comparison of two lactobacilli prophylactic protocols (one or two administrations) by intra-tracheal administration in a C57BL/6 murine model of PA pneumonia. A549 cells viability was improved from 23 to 75% when lactobacilli were administered before PAO1 incubation, demonstrating a protective effect (P\textless0.001). A significant decrease of 2 log of PAO1 was observed 4 h after PAO1 instillation (3x 10(6) cfu/mouse) in both groups receiving lactobacilli (9x 10(6) cfu/mouse) compared to PAO1 group (P\textless0.05). One single prophylactic administration of lactobacilli significantly decreased the secretion by 50% in bronchoalveolar lavages of interleukin (IL)-6 and tumour necrosis factor-a compared to PAO1. No difference of secretion was observed for the IL-10 secretion, whatever the prophylactic study design. This is the first study highlighting that direct lung administration of Lactobacillus strains protect against PA pneumonia. Next step will be to decipher the mechanisms involved before developing this novel approach for human applications
    corecore