24 research outputs found

    [11C]MADAM Used as a Model for Understanding the Radiometabolism of Diphenyl Sulfide Radioligands for Positron Emission Tomography (PET).

    No full text
    In quantitative PET measurements, the analysis of radiometabolites in plasma is essential for determining the exact arterial input function. Diphenyl sulfide compounds are promising PET and SPECT radioligands for in vivo quantification of the serotonin transporter (SERT) and it is therefore important to investigate their radiometabolism. We have chosen to explore the radiometabolic profile of [11C]MADAM, one of these radioligands widely used for in vivo PET-SERT studies. The metabolism of [11C]MADAM/MADAM was investigated using rat and human liver microsomes (RLM and HLM) in combination with radio-HPLC or UHPLC/Q-ToF-MS for their identification. The effect of carrier on the radiometabolic rate of the radioligand [11C]MADAM in vitro and in vivo was examined by radio-HPLC. RLM and HLM incubations were carried out at two different carrier concentrations of 1 and 10 μM. Urine samples after perfusion of [11C]MADAM/MADAM in rats were also analysed by radio-HPLC. Analysis by UHPLC/Q-ToF-MS identified the metabolites produced in vitro to be results of N-demethylation, S-oxidation and benzylic hydroxylation. The presence of carrier greatly affected the radiometabolism rate of [11C]MADAM in both RLM/HLM experiments and in vivo rat studies. The good concordance between the results predicted by RLM and HLM experiments and the in vivo data obtained in rat studies indicate that the kinetics of the radiometabolism of the radioligand [11C]MADAM is dose-dependent. This issue needs to be addressed when the diarylsulfide class of compounds are used in PET quantifications of SERT

    Chemical delivery system of metaiodobenzylguanidine (MIBG) to the central nervous system.

    No full text
    International audienceThe aim of the present investigation was to apply a chemical delivery system (CDS) to MIBG (4) with the purpose of delivering this drug to the CNS. Compound 4 has been linked to a 1,4-dihydroquinoline moiety in order to achieve its CNS penetration, and here we report the synthesis to link 4 to the chemical delivery system and the radiosynthesis with carbon-11 of the "CDS-4 entity". After iv injection into rats of the [(11)C]CDS-4, the follow-up study of the radioactivity distribution in blood samples and brain homogenates and the analysis by HPLC and LC-MS/MS have confirmed the release of 4 into the CNS

    Delivering FLT to the Central Nervous System by Means of a Promising Targeting System: Synthesis, [11C]Radiosynthesis, and in Vivo Evaluation

    No full text
    LDM TEP COLLInternational audienceThe development of delivery systems to transport some specific radiotracers across the blood-brain barrier (BBB) needs to be investigated for brain imaging. [18F]FLT (3′-deoxy-3′-18F-fluoro-l-thymidine), an analogue substrate of the nucleoside thymidine, has been developed as a proliferation tracer for oncological PET studies. Unfortunately, low-grade brain tumors are poorly visualized due to the low uptake of [18F]FLT in brain tissue, preventing its use in PET imaging to detect brain tumors at an early stage. Based on our previous work, a redox chemical delivery system (CDS) related to Bodor’s strategy was developed to enable the penetration of FLT into the brain. To this end, FLT was covalently linked to a series of lipophilic carriers based on a 1,4-dihydroquinoline structure. To determine the best carrier, various sets of [11C]CDS-FLT were prepared and injected into rats. Pleasingly, in vivo results let us suggest that this CDS is a promising approach to overcome the BBB to target low-grade brain tumors for PET imaging

    New developments in redox chemical delivery systems by means of 1,4-dihydroquinoline-based targetor: Application to galantamine delivery to the brain

    No full text
    International audienceKeywords: Redox chemical delivery system Blood brain barrier (BBB) Acetylcholinesterase (AChE) inhibitors Galantamine a b s t r a c t The therapeutic efficiency of palliative treatments of AD, mostly based on acetylcholinesterase (AChE) inhibitors, is marred by serious adverse effects due to peripheral activity of these AChE inhibitors. In the literature, a redox-based chemical delivery system (CDS) has been developed to enhance drugs distribution to the brain while reducing peripheral side effects. Herein, we disclose two new synthetic strategies for the preparation of 1,4-dihydroquinoline/quinolinium salt redox-based systems particularly well designed for brain delivery of drugs sensitive to alkylation reactions. These strategies have been applied in the present case to the AChE inhibitor galantamine with the aim of alleviating adverse effects observed with cholinergic AD treatment. The first strategy is based on an intramolecular alkylation reaction as key step, whilst the second strategy relies on a useful coupling between galantamine and quinolinium salt key intermediate. In the course of this work, polymer-supported reagents and a solid-phase synthesis approach revealed to be highly helpful to develop this redox-based galantamine CDS. Ó 2014 Elsevier Masson SAS. All rights reserved

    Synthesis, radiosynthesis and biological evaluation of 1,4-dihydroquinoline derivatives as new carriers for specific brain delivery.

    No full text
    International audienceIn spite of numerous reports dealing with the use of 1,4-dihydropyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1,4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuroactive drug-carrier candidates. The radiolabeled 1,4-dihydroquinoline [(11)C] was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [(11)C] into the CNS. HPLC analysis of brain homogenates showed that oxidation of [(11)C] into the corresponding quinolinium salt [(11)C] was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1,4-dihydroquinoline derivatives to transport a neuroactive drug in the CNS. For this purpose, gamma-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1,4-dihydroquinoline-type carrier. After i.p. injection of 1,4-dihydroquinoline-GABA derivative in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems
    corecore