384 research outputs found

    Conservation implications of the mating system of the Pampa Hermosa landrace of peach palm analyzed with microsatellite markers

    Get PDF
    Peach palm (Bactris gasipaes) is cultivated by many indigenous and traditional communities from Amazonia to Central America for its edible fruits, and is currently important for its heart-of-palm. The objective of this study was to investigate the mating system of peach palm, as this is important for conservation and breeding. Eight microsatellite loci were used to genotype 24 open-pollinated progenies from three populations of the Pampa Hermosa landrace maintained in a progeny trial for genetic improvement. Both the multi-locus outcrossing rates (0.95 to 0.99) and the progeny level multi-locus outcrossing rates (0.9 to 1.0) were high, indicating that peach palm is predominantly allogamous. The outcrossing rates among relatives were significantly different from zero (0.101 to 0.202), providing evidence for considerable biparental inbreeding within populations, probably due to farmers planting seeds of a small number of open-pollinated progenies in the same plot. The correlations of paternity estimates were low (0.051 to 0.112), suggesting a large number of pollen sources (9 to 20) participating in pollination of individual fruit bunches. Effective population size estimates suggest that current germplasm collections are insufficient for long-term ex situ conservation. As with most underutilized crops, on farm conservation is the most important component of an integrated conservation strategy

    Population structure of the malaria vector Anopheles moucheti in the equatorial forest region of Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles moucheti </it>is a major malaria vector in forested areas of Africa. However, despite its important epidemiological role, it remains poorly known and insufficiently studied. Here, levels of genetic differentiation were estimated between different <it>A. moucheti </it>populations sampled throughout its distribution range in Central Africa.</p> <p>Methods</p> <p>Polymorphism at ten microsatellite markers was compared in mosquitoes sampled in Cameroon, the Democratic Republic of Congo and an island on Lake Victoria in Uganda. Microsatellite data were used to estimate genetic diversity within populations, their relative long-term effective population size, and the level of genetic differentiation between them.</p> <p>Results</p> <p>All specimens collected in Tsakalakuku (Democratic Republic of Congo) were identified as <it>A. m. bervoetsi </it>while other samples consisted of <it>A. m. moucheti</it>. Successful amplification was obtained at all microsatellite loci within all <it>A. m. moucheti </it>samples while only six loci amplified in <it>A. m. bervoetsi</it>. Allelic richness and heterozygosity were high for all populations except the island population of Uganda and <it>A. m. bervoetsi</it>. High levels of genetic differentiation were recorded between <it>A. m. bervoetsi </it>and each <it>A. m. moucheti </it>sample as well as between the island population of <it>A. m. moucheti </it>and mainland populations. Significant isolation by distance was evidenced between mainland populations.</p> <p>Conclusion</p> <p>High levels of genetic differentiation supports complete speciation of <it>A. m. bervoetsi </it>which should henceforth be recognized as a full species and named <it>A. bervoetsi</it>. Isolation by distance is the main force driving differentiation between mainland populations of <it>A. m. moucheti</it>. Genetically and geographically isolated populations exist on Lake Victoria islands, which might serve as relevant field sites for evaluation of innovative vector control strategies.</p

    Plastic and Heritable Components of Phenotypic Variation in Nucella lapillus: An Assessment Using Reciprocal Transplant and Common Garden Experiments

    Get PDF
    Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal

    Invasion Genetics of the Western Flower Thrips in China: Evidence for Genetic Bottleneck, Hybridization and Bridgehead Effect

    Get PDF
    The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. F. occidentalis, which is endemic to North America, was initially detected in Kunming in southwestern China in 2000 and since then it has rapidly invaded several other localities in China where it has greatly damaged greenhouse vegetables and ornamental crops. Controlling this invasive pest in China requires an understanding of its genetic makeup and migration patterns. Using the mitochondrial COI gene and 10 microsatellites, eight of which were newly isolated and are highly polymorphic, we investigated the genetic structure and the routes of range expansion of 14 F. occidentalis populations in China. Both the mitochondrial and microsatellite data revealed that the genetic diversity of F. occidentalis of the Chinese populations is lower than that in its native range. Two previously reported cryptic species (or ecotypes) were found in the study. The divergence in the mitochondrial COI of two Chinese cryptic species (or ecotypes) was about 3.3% but they cannot be distinguished by nuclear markers. Hybridization might produce such substantial mitochondrial-nuclear discordance. Furthermore, we found low genetic differentiation (global FST = 0.043, P<0.001) among all the populations and strong evidence for gene flow, especially from the three southwestern populations (Baoshan, Dali and Kunming) to the other Chinese populations. The directional gene flow was further supported by the higher genetic diversity of these three southwestern populations. Thus, quarantine and management of F. occidentalis should focus on preventing it from spreading from the putative source populations to other parts of China

    Additional Haplogroups of Toxoplasma gondii out of Africa: Population Structure and Mouse-Virulence of Strains from Gabon

    Get PDF
    Prevalence of human toxoplasmosis in tropical African countries usually exceeds 50%. Its role as a major opportunistic infection of AIDS patients is regularly described. Due to the lack of investigation, congenital infection is certainly underestimated in Africa. Incidence of Toxoplasma ocular disease is higher in Africa and South America than in Europe. Severe cases in immunocompetent patients were described after infection acquired in Amazonia, but nothing is known about such cases in Africa. Several studies argued for a role of genotypes in the clinical expression of human toxoplasmosis, and for a geographical structuration of Toxoplasma across continents. Genetic data concerning isolates from Africa are scarce. Here, apart from the worldwide Type III, we described two main haplogroups, Africa 1 and 3. We detected genetic exchanges between urban centers favored by trade exchange and transportation. It shows how important human influence is, even in shaping the genetic structure of a zoonotic disease agent. Finding of identical haplogroups in South America suggested that these African and American strains share a common ancestor. As a higher pathogenicity in human of South American genotypes has been described, this similarity of genotypes should encourage further clinical studies with genotype analysis in Africa

    Sympatric and Allopatric Divergence of MHC Genes in Threespine Stickleback

    Get PDF
    Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes

    Genetic Diversity and Ecological Niche Modelling of Wild Barley:Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?

    Get PDF
    Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security

    Accurate Inference of Subtle Population Structure (and Other Genetic Discontinuities) Using Principal Coordinates

    Get PDF
    Accurate inference of genetic discontinuities between populations is an essential component of intraspecific biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations. These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data.PCO-MC uses data from all principal coordinate axes simultaneously to calculate a multidimensional "density landscape", from which the number of subpopulations, and the membership within subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach outperforms a Bayesian MCMC procedure when many loci (e.g. 100) are sampled, but that the Bayesian procedure is marginally superior with few loci (e.g. 10). When presented with sufficient data, PCO-MC accurately delineated subpopulations with population F(st) values as low as 0.03 (G'(st)>0.2), whereas the limit of resolution of the Bayesian approach was F(st) = 0.05 (G'(st)>0.35).We draw a distinction between population structure inference for describing biodiversity as opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous variable is more useful for case-control correction in structured association studies

    Lineage diversification and historical demography of a montane bird Garrulax elliotii - implications for the Pleistocene evolutionary history of the eastern Himalayas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pleistocene climate fluctuations have shaped the patterns of genetic diversity observed in many extant species. In montane habitats, species' ranges may have expanded and contracted along an altitudinal gradient in response to environmental fluctuations leading to alternating periods of genetic isolation and connectivity. Because species' responses to climate change are influenced by interactions between species-specific characteristics and local topography, diversification pattern differs between species and locations. The eastern Himalayas is one of the world's most prominent mountain ranges. Its complex topography and environmental heterogeneity present an ideal system in which to study how climatic changes during Pleistocene have influenced species distributions, genetic diversification, and demography. The Elliot's laughing thrush (<it>Garrulax elliotii</it>) is largely restricted to high-elevation shrublands in eastern Himalayas. We used mitochondrial DNA and microsatellites to investigate how genetic diversity in this species was affected by Pleistocene glaciations.</p> <p>Results</p> <p>Mitochondrial data detected two partially sympatric north-eastern and southern lineages. Microsatellite data, however, identified three distinct lineages congruent with the geographically separated southern, northern and eastern eco-subregions of the eastern Himalayas. Geographic breaks occur in steep mountains and deep valleys of the Kangding-Muli-Baoxin Divide. Divergence time estimates and coalescent simulations indicate that lineage diversification occurred on two different geographic and temporal scales; recent divergence, associated with geographic isolation into individual subregions, and historical divergence, associated with displacement into multiple refugia. Despite long-term isolation, genetic admixture among these subregional populations was observed, indicating historic periods of connectivity. The demographic history of <it>Garrulax elliotii </it>shows continuous population growth since late Pleistocene (about 0.125 mya).</p> <p>Conclusion</p> <p>While altitude-associated isolation is typical of many species in other montane regions, our results suggest that eco-subregions in the eastern Himalayas exhibiting island-like characteristics appear to have determined the diversification of <it>Garrulax elliotii</it>. During the Pleistocene, these populations became isolated on subregions during interglacial periods but were connected when these expanded to low altitude during cooler periods. The resultant genetic admixture of lineages might obscure pattern of genetic variation. Our results provide new insights into sky island diversification in a previously unstudied region, and further demonstrate that Pleistocene climatic changes can have profound effects on lineage diversification and demography in montane species.</p
    • …
    corecore