26 research outputs found
Electron-H-3(+) collisions at intermediate energies
A new procedure is presented for the ab initio study of electron-molecule collision at energies straddling the target ionization threshold. The R-matrix with pseudostates method, which allows for the inclusion of discretized continuum states in a close-coupling expansion, is adapted to molecular targets using even-tempered basis sets. Calculations for electron collisions with the H-3(+) molecular ion provide converged polarizabilities, electronic excitation and ionization cross sections
Electron molecule collisions calculations using the R-matrix method
The R-matrix method provides a complete theoretical framework for the treatment of low energy electron collisions. Recent results obtained with the UK R-matrix codes are presented focusing on electron impact electronic excitation of water and the CF radical, electron impact dissociation of molecular hydrogen and its isotopomers, and the dissociative recombination of the CO2+ dication. Examples of other processes, studied in recent calculations are also given. (C) 2003 Elsevier Science Ltd. All rights reserved
UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method
UKRmol+ is a new implementation of the time-independent UK R-matrix electron–molecule scattering code. Key features of the implementation are the use of quantum chemistry codes such as Molpro to provide target molecular orbitals; the optional use of mixed Gaussian — B-spline basis functions to represent the continuum and improved configuration and Hamiltonian generation. The code is described, and examples covering electron collisions from a range of targets, positron collisions and photoionization are presented. The codes are freely available as a tarball from Zenodo
Quantemol Electron Collisions (QEC): An Enhanced Expert System for Performing Electron Molecule Collision Calculations Using the R-Matrix Method
Collisions of low energy electrons with molecules are important for understanding many aspects of the environment and technologies. Understanding the processes that occur in these types of collisions can give insights into plasma etching processes, edge effects in fusion plasmas, radiation damage to biological tissues and more. A radical update of the previous expert system for computing observables relevant to these processes, Quantemol-N, is presented. The new Quantemol Electron Collision (QEC) expert system simplifyies the user experience, improving reliability and implements new features. The QEC graphical user interface (GUI) interfaces the Molpro quantum chemistry package for molecular target setups, and the sophisticated UKRmol+ codes to generate accurate and reliable cross-sections. These include elastic cross-sections, super elastic cross-sections between excited states, electron impact dissociation, scattering reaction rates, dissociative electron attachment, differential cross-sections, momentum transfer cross-sections, ionization cross sections, and high energy electron scattering cross-sections. With this new interface we will be implementing dissociative recombination estimations, vibrational excitations for neutrals and ions, and effective core potentials in the near future
Expression of Distal-less, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria
The similarity in the genetic regulation of
arthropod and vertebrate appendage formation has been
interpreted as the product of a plesiomorphic gene
network that was primitively involved in bilaterian
appendage development and co-opted to build appendages
(in modern phyla) that are not historically related
as structures. Data from lophotrochozoans are needed to
clarify the pervasiveness of plesiomorphic appendage forming
mechanisms. We assayed the expression of three
arthropod and vertebrate limb gene orthologs, Distal-less
(Dll), dachshund (dac), and optomotor blind (omb), in
direct-developing juveniles of the polychaete Neanthes
arenaceodentata. Parapodial Dll expression marks premorphogenetic
notopodia and neuropodia, becoming restricted
to the bases of notopodial cirri and to ventral
portions of neuropodia. In outgrowing cephalic appendages,
Dll activity is primarily restricted to proximal
domains. Dll expression is also prominent in the brain. dac
expression occurs in the brain, nerve cord ganglia, a pair
of pharyngeal ganglia, presumed interneurons linking a
pair of segmental nerves, and in newly differentiating
mesoderm. Domains of omb expression include the brain,
nerve cord ganglia, one pair of anterior cirri, presumed
precursors of dorsal musculature, and the same pharyngeal
ganglia and presumed interneurons that express dac.
Contrary to their roles in outgrowing arthropod and
vertebrate appendages, Dll, dac, and omb lack comparable
expression in Neanthes appendages, implying independent
evolution of annelid appendage development. We infer
that parapodia and arthropodia are not structurally or
mechanistically homologous (but their primordia might
be), that Dll’s ancestral bilaterian function was in sensory
and central nervous system differentiation, and that
locomotory appendages possibly evolved from sensory
outgrowths
Gγ1, a Downstream Target for the hmgcr-Isoprenoid Biosynthetic Pathway, Is Required for Releasing the Hedgehog Ligand and Directing Germ Cell Migration
The isoprenoid biosynthetic pathway leading from the production of mevalonate by HMGCoA reductase (Hmgcr) to the geranylation of the G protein subunit, Gγ1, plays an important role in cardiac development in the fly. Hmgcr has also been implicated in the release of the signaling molecule Hedgehog (Hh) from hh expressing cells and in the production of an attractant that directs primordial germ cells to migrate to the somatic gonadal precursor cells (SGPs). The studies reported here indicate that this same hmgcr→Gγ1 pathway provides a novel post-translational mechanism for modulating the range and activity of the Hh signal produced by hh expressing cells. We show that, like hmgcr, gγ1 and quemao (which encodes the enzyme, geranylgeranyl diphosphate synthetase, that produces the substrate for geranylation of Gγ1) are components of the hh signaling pathway and are required for the efficient release of the Hh ligand from hh expressing cells. We also show that the hmgcr→Gγ1 pathway is linked to production of the germ cell attractant by the SGPs through its ability to enhance the potency of the Hh signal. We show that germ cell migration is disrupted by the loss or gain of gγ1 activity, by trans-heterozygous combinations between gγ1 and either hmgcr or hh mutations, and by ectopic expression of dominant negative Gγ1 proteins that cannot be geranylated
Roadmap on dynamics of molecules and clusters in the gas phase
This roadmap article highlights recent advances, challenges and future prospects in studies of the dynamics of molecules and clusters in the gas phase. It comprises nineteen contributions by scientists with leading expertise in complementary experimental and theoretical techniques to probe the dynamics on timescales spanning twenty order of magnitudes, from attoseconds to minutes and beyond, and for systems ranging in complexity from the smallest (diatomic) molecules to clusters and nanoparticles. Combining some of these techniques opens up new avenues to unravel hitherto unexplored reaction pathways and mechanisms, and to establish their significance in, e.g. radiotherapy and radiation damage on the nanoscale, astrophysics, astrochemistry and atmospheric science