300 research outputs found

    Lythraceae

    Get PDF
    Hierbas, sufrútices o arbustos de hojas opuestas, raro verticiladas o alternas, simples, enteras, sésiles o brevemente pecioladas. Flores solitarias o en cimas axilares o espigas apicales. Cíclicas, zigomorfas o actinomorfas, perfectas. Tálamo tubuloso o hipocraterimorfo, persistente a la fructificación. Cáliz 4-6-lobado, emplazado en el ápice del tálamo, simple o con apéndices intersepálicos. Pétalos 4-6, iguales o desiguales, a veces vestigiales o ausentes por aborto, libres, base angostada hasta pseudopecioliforme, nervios notorios, base soldada entre los lóbulos del cáliz en el ápice del tálamo. Estambres 4-12 (-22), heterodínamos, base de los filamentos soldadas a la cara interna del tálamo, desde muy cortos (doble o triple de la long. de las anteras) hasta muy largos; anteras dorsifijas, bitécicas, dehiscencia longitudinal. Disco glandular anular o dorsal asimétrico, raro ausente, en la base del ovario súpero, 2-carpelar, 1-2-locular, placentación central, axial o basal. Ovulos pocos a numerosos. Estilo corto o largo atenuándose hacia el ápice en un estigma esférico o agudo inconspicuo. Cápsula membranácea protegida por el tálamo persistente, 1-2-locular, indehiscente o de dehiscencia diversa. Semillas pequeñas, pocas a numerosas, orbicular-aplanadas hasta prismático-alargadas, veces aladas, exalbuminadas

    Gene deficiency in activating Fcγ receptors influences the macrophage phenotypic balance and reduces atherosclerosis in mice

    Get PDF
    Immunity contributes to arterial inflammation during atherosclerosis. Oxidized low-density lipoproteins induce an autoimmune response characterized by specific antibodies and immune complexes in atherosclerotic patients. We hypothesize that specific Fcγ receptors for IgG constant region participate in atherogenesis by regulating the inflammatory state of lesional macrophages. In vivo we examined the role of activating Fcγ receptors in atherosclerosis progression using bone marrow transplantation from mice deficient in γ-chain (the common signaling subunit of activating Fcγ receptors) to hyperlipidemic mice. Hematopoietic deficiency of Fcγ receptors significantly reduced atherosclerotic lesion size, which was associated with decreased number of macrophages and T lymphocytes, and increased T regulatory cell function. Lesions of Fcγ receptor deficient mice exhibited increased plaque stability, as evidenced by higher collagen and smooth muscle cell content and decreased apoptosis. These effects were independent of changes in serum lipids and antibody response to oxidized low-density lipoproteins. Activating Fcγ receptor deficiency reduced pro-inflammatory gene expression, nuclear factor-κB activity, and M1 macrophages at the lesion site, while increasing anti-inflammatory genes and M2 macrophages. The decreased inflammation in the lesions was mirrored by a reduced number of classical inflammatory monocytes in blood. In vitro, lack of activating Fcγ receptors attenuated foam cell formation, oxidative stress and pro-inflammatory gene expression, and increased M2-associated genes in murine macrophages. Our study demonstrates that activating Fcγ receptors influence the macrophage phenotypic balance in the artery wall of atherosclerotic mice and suggests that modulation of Fcγ receptor-mediated inflammatory responses could effectively suppress atherosclerosis

    Characterization of the striatal extracellular matrix in a mouse model of Parkinson’s disease

    Get PDF
    Parkinson’s disease’s etiology is unknown, although evidence suggests the involvement of oxidative modifications of intracellular components in disease pathobiology. Despite the known involvement of the extracellular matrix in physiology and disease, the influence of oxidative stress on the matrix has been neglected. The chemical modifications that might accumulate in matrix components due to their long half-live and the low amount of extracellular antioxidants could also contribute to the disease and explain ineffective cellular therapies. The enriched striatal extracellular matrix from a mouse model of Parkinson’s disease was characterized by Raman spectroscopy. We found a matrix fingerprint of increased oxalate content and oxidative modifications. To uncover the effects of these changes on brain cells, we morphologically characterized the primary microglia used to repopulate this matrix and further quantified the effects on cellular mechanical stress by an intracellular fluorescence resonance energy transfer (FRET)-mechanosensor using the U-2 OS cell line. Our data suggest changes in microglia survival and morphology, and a decrease in cytoskeletal tension in response to the modified matrix from both hemispheres of 6-hydroxydopamine (6-OHDA)-lesioned animals. Collectively, these data suggest that the extracellular matrix is modified, and underscore the need for its thorough investigation, which may reveal new ways to improve therapies or may even reveal new therapies.This research was funded by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE 2020 Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and Portuguese funds through FCT (ID/BIM/04293/2020), UnIC (UID/IC/00051/2019), iBiMED (UID/BIM/04501/2020 and POCI-01-0145-FEDER-007628), and LAQV/REQUIMTE (UIDB/50006/2020) research units as well as RV’s Fellowship Grant (IF/00286/2015). Ana Freitas acknowledges FCT for her PhD scholarship (SFRH/BD/111423/2015), Miguel Aroso is hired through the Scientific Employment Stimulus from FCT (CEECIND/03415/2017), and M.L. has an FCT RJEC Id 3762 contract.The authors thank Eduardo D Martín Montiel for his support, fruitful discussions, suggestions, and technical and scientific help. The authors also thank Sofia Lamas and all the i3S Animal facility personnel for their support with the animals throughout the study. Raman spectroscopy, together with wide field and confocal microscopy, were performed at the i3S Scientific Platform Bioimaging, member of the PPBI (Plataforma Portuguesa de Bioimagem, POCI-01-0145-FEDER-022122)

    Wind and Solar Curtailment: International Experience and Practices

    Get PDF
    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power

    Genome-wide profiling of non-smoking-related lung cancer cells reveals common RB1 rearrangements associated with histopathologic transformation in EGFR-mutant tumors.

    Get PDF
    The etiology and the molecular basis of lung adenocarcinomas (LuADs) in nonsmokers are currently unknown. Furthermore, the scarcity of available primary cultures continues to hamper our biological understanding of non-smoking-related lung adenocarcinomas (NSK-LuADs). We established patient-derived cancer cell (PDC) cultures from metastatic NSK-LuADs, including two pairs of matched EGFR-mutant PDCs before and after resistance to tyrosine kinase inhibitors (TKIs), and then performed whole-exome and RNA sequencing to delineate their genomic architecture. For validation, we analyzed independent cohorts of primary LuADs. In addition to known non-smoker-associated alterations (e.g. RET, ALK, EGFR, and ERBB2), we discovered novel fusions and recurrently mutated genes, including ATF7IP, a regulator of gene expression, that was inactivated in 5% of primary LuAD cases. We also found germline mutations at dominant familiar-cancer genes, highlighting the importance of genetic predisposition in the origin of a subset of NSK-LuADs. Furthermore, there was an over-representation of inactivating alterations at RB1, mostly through complex intragenic rearrangements, in treatment-naive EGFR-mutant LuADs. Three EGFR-mutant and one EGFR-wild-type tumors acquired resistance to EGFR-TKIs and chemotherapy, respectively, and histology on re-biopsies revealed the development of small-cell lung cancer/squamous cell carcinoma (SCLC/LuSCC) transformation. These features were consistent with RB1 inactivation and acquired EGFR-T790M mutation or FGFR3-TACC3 fusion in EGFR-mutant tumors. We found recurrent alterations in LuADs that deserve further exploration. Our work also demonstrates that a subset of NSK-LuADs arises within cancer-predisposition syndromes. The preferential occurrence of RB1 inactivation, via complex rearrangements, found in EGFR-mutant tumors appears to favor SCLC/LuSCC transformation under growth-inhibition pressures. Thus RB1 inactivation may predict the risk of LuAD transformation to a more aggressive type of lung cancer, and may need to be considered as a part of the clinical management of NSK-LuADs patients.This work was supported by the Fundacion Cientifica Asociacion Española Contra el Cancer-AECC (grant number GCB14142170MONT) to LMM, MS-C, and EF; the Spanish Ministry of Economy and Competitivity-MINECO (grant number SAF-2017-82186R to MS-C; Rio Hortega-CM17/00180 to MS; PROYBAR17005NADA to EN); the Health Institute Carlos III-ISCIII, Fondo Europeo de Desarrollo Regional-FEDER (grant Number PT13/0001/0044, PT17/0009/0019, PI16 01821); the Government of Navarra (grant number DIANA project); and the Ramon Areces Foundation (no grant number is applicable) to LMM and RP.S

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management

    CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptor domain. Translational and clinical research

    Get PDF
    CK2 represents an oncology target scientifically validated. However, clinical research with inhibitors of the CK2-mediated phosphorylation event is still insufficient to recognize it as a clinically validated target. CIGB-300, an investigational peptide-based drug that targets the phosphoaceptor site, binds to a CK2 substrate array in vitro but mainly to B23/nucleophosmin in vivo. The CIGB-300 proapoptotic effect is preceded by its nucleolar localization, inhibition of the CK2-mediated phosphorylation on B23/nucleophosmin and nucleolar disassembly. Importantly, CIGB-300 shifted a protein array linked to apoptosis, ribosome biogenesis, cell proliferation, glycolisis, and cell motility in proteomic studies which helped to understand its mechanism of action. In the clinical ground, CIGB-300 has proved to be safe and well tolerated in a First-in-Human trial in women with cervical malignancies who also experienced signs of clinical benefit. In a second Phase 1 clinical trial in women with cervical cancer stage IB2/II, the MTD and DLT have been also identified in the clinical setting. Interestingly, in cervical tumors the B23/nucleophosmin protein levels were significantly reduced after CIGB-300 treatment at the nucleus compartment. In addition, expanded use of CIGB-300 in case studies has evidenced antitumor activity when administered as compassional option. Collectively, our data outline important clues on translational and clinical research from this novel peptide-based drug reinforcing its perspectives to treat cancer and paving the way to validate CK2 as a promising target in oncology.Fil: Perea, Silvio E.. Center for Genetic Engineering and Biotechnology; CubaFil: Baladron, Idania. Center for Genetic Engineering and Biotechnology; CubaFil: Garcia, Yanelda. Center for Genetic Engineering and Biotechnology; CubaFil: Perera, Yasser. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Adlin. Center for Genetic Engineering and Biotechnology; CubaFil: Soriano, Jorge L.. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Batista, Noyde. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Palau, Aley. Center for Genetic Engineering and Biotechnology; Cuba. General Hospital ‘‘Hermanos Ameijeiras’; CubaFil: Hernández, Ignacio. Center for Genetic Engineering and Biotechnology; CubaFil: Farina, Hernán Gabriel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Garcia, Idrian. Center for Genetic Engineering and Biotechnology; CubaFil: Gonzalez, Lidia. Center for Genetic Engineering and Biotechnology; CubaFil: Gil, Jeovanis. Center for Genetic Engineering and Biotechnology; CubaFil: Rodriguez, Arielis. Center for Genetic Engineering and Biotechnology; CubaFil: Solares, Margarita. Center for Genetic Engineering and Biotechnology; CubaFil: Santana, Agueda. Center for Genetic Engineering and Biotechnology; CubaFil: Cruz, Marisol. Center for Genetic Engineering and Biotechnology; CubaFil: Lopez, Matilde. Center for Genetic Engineering and Biotechnology; CubaFil: Valenzuela, Carmen. Center for Genetic Engineering and Biotechnology; CubaFil: Reyes, Osvaldo. Center for Genetic Engineering and Biotechnology; CubaFil: López Saura, Pedro A.. Center for Genetic Engineering and Biotechnology; CubaFil: González, Carlos A.. Center for Genetic Engineering and Biotechnology; CubaFil: Diaz, Alina. Center for Genetic Engineering and Biotechnology; CubaFil: Castellanos, Lila. Center for Genetic Engineering and Biotechnology; CubaFil: Sanchez, Aniel. Center for Genetic Engineering and Biotechnology; CubaFil: Betancourt, Lazaro. Center for Genetic Engineering and Biotechnology; CubaFil: Besada, Vladimir. Center for Genetic Engineering and Biotechnology; CubaFil: González, Luis J.. Center for Genetic Engineering and Biotechnology; CubaFil: Garay, Hilda. Center for Genetic Engineering and Biotechnology; CubaFil: Gómez, Roberto. Center for Genetic Engineering and Biotechnology; CubaFil: Gomez, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Alonso, Daniel Fernando. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perrin, Phillipe. No especifíca;Fil: Renualt, Jean Yves. No especifíca;Fil: Sigman, Hugo. No especifíca;Fil: Herrera, Luis. Center for Genetic Engineering and Biotechnology; CubaFil: Acevedo, Boris. Center for Genetic Engineering and Biotechnology; Cub
    • …
    corecore