42 research outputs found

    NGF effects on developing forebrain cholinergic neurons are regionally specific

    Full text link
    Nerve growth factor (NGF) has been shown to have an effect on neurons in the central nervous system (CNS). A number of observations suggest that NGF acts as a trophic factor for cholinergic neurons of the basal forebrain and the caudate-putamen. We sought to further characterize the CNS actions of NGF by examining its effect on choline acetyltransferase (ChAT) activity in the cell bodies and fibers of developing neurons of the septum and caudate-putamen. ChAT activity was increased after even a single NGF injection. Interestingly, the magnitude of the effect of multiple NGF injections suggested that repeated treatments may augment NGF actions on these neurons. The time-course of the response to NGF was followed after a single injection on postnatal day (PD) 2. NGF treatment produced long-lasting increases in ChAT activity in septum, hippocampus and caudate-putamen. The response in cell body regions (septum, caudate-putamen) was characterized by an initial lag period of approximately 24 hr, a rapid rise to maximum values, a plateau phase and a return to baseline. The response in hippocampus was delayed by 48 hr relative to that in septum, indicating that NGF actions on ChAT were first registered in septal cell bodies. Finally, developmental events were shown to have a regionally specific influence on the response of neurons to NGF. For though the septal response to a single NGF injection was undiminished well into the third postnatal week, little or no response was detected in caudate-putamen at that time. In highlighting the potency and regional specificity of NGF effects, these observations provide additional, support for the hypothesis that NGF is a trophic factor for CNS cholinergic neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45403/1/11064_2004_Article_BF00970927.pd

    Is activation of the Na+^+K+^+ pump necessary for NGF-mediated neuronal survival?

    Get PDF
    The ability of nerve growth factor to cause rapid activation of the Na+K+ pump of its responsive cells was examined by measuring the uptake of 86Rb+. A significant increase in 86Rb+ uptake in Ea chick dorsal root ganglion sensory neurons after NGF treatment was seen only if the cells had been damaged during the preparation procedure. Such damaged cells could not survive in culture in the presence of NGF, and undamaged cells that did survive in response to NGF exhibited no increased 86Rb+ uptake rate. Furthermore, cultured calf adrenal medullary cells did not show an increase in 86Rb+ uptake after treatment with NGF, although these cells respond to NGF with an increased synthesis of catecholaminergic enzymes. These results are incompatible with the hypothesis that the mechanism of action of NGF that promotes neuronal survival and enzyme induction results from an initial stimulation of the Na+K+ pump
    corecore