784 research outputs found

    Z+jet production at NNLO

    Full text link
    We give a brief overview of our calculation of the next-to-next-to-leading order (NNLO) QCD corrections to Z+jet production in hadronic collisions. Phenomenological results are presented which comprise various differential distributions for 8 TeV proton-proton collisions. A significant reduction of the scale uncertainties is observed throughout as we move from NLO to NNLO. We further discuss how this calculation can be used to describe the inclusive Z-boson production at large transverse momentum. To this end, the theory prediction is compared to the measurements performed by the ATLAS and CMS collaborations at a centre-of-mass energy of 8 TeV. Here, the inclusion of NNLO QCD effects are found to result in a substantial improvement in the agreement between theory and data for the normalised distributions.Comment: 8 pages, 5 figures, to appear in the proceedings of Loops and Legs in Quantum Field Theory, 24-29 April 2016, Leipzig, German

    Streaming potential measurements 2. Relationship between electrical and hydraulic flow patterns from rock samples during deformation

    Get PDF
    Streaming potential and resistivity measurements have been performed on Fontainebleau sandstone and Villejust quartzite samples in a triaxial device during compaction, uniaxial compression, and rupture. Measurements on individual samples do not show any clear intrinsic dependence of the streaming potential coefficient with permeability. An apparent dependence of the streaming potential coefficient with permeability is, however, observed during deformation. The effect of surface conductivity is taken into account and is small compared with the observed changes in the streaming potential coefficient. The observed dependence is therefore interpreted in terms of a difference in the evolution of the electrical and hydraulic connectivity patterns during deformation. This effect causes the streaming potential coefficient, and consequently the inferred ξ potential, to be reduced by a geometrical factor R_G representing the electrical efficiency of the hydraulic network. Estimates of the R_G factor varying between 0.2 and 0.8 for electrolyte resistivity larger than 100 Ωm are obtained by comparing the values of the ξ potential inferred from intact rock samples with the values obtained from crushed rock samples, where the geometrical effects are assumed to be negligible. The reduction of the streaming potential coefficient observed during compaction or uniaxial compression suggests that the tortuosity of the hydraulic network increases faster than the tortuosity of the electrical network. Before rupture, an increase in the streaming potential coefficient associated with the onset of dilatancy was observed for three samples of Fontainebleau sandstone and one sample of Villejust quartzite. The changes in streaming potential coefficient prior to failure range from 30% to 50%. During one experiment, an increase in the concentration of sulfate ions was also observed before failure. These experiments suggest that observable streaming potential and geochemical variations could occur before earthquakes

    Precise QCD predictions for the production of a Z boson in association with a hadronic jet

    Get PDF
    We compute the cross section and differential distributions for the production of a Z boson in association with a hadronic jet to next-to-next-to-leading order (NNLO) in perturbative QCD, including the leptonic decay of the Z boson. We present numerical results for the transverse momentum and rapidity distributions of both the Z boson and the associated jet at the LHC. We find that the NNLO corrections increase the NLO predictions by approximately 1% and significantly reduce the scale variation uncertainty

    The NNLO QCD corrections to Z boson production at large transverse momentum

    Get PDF
    The transverse momentum distribution of massive neutral vector bosons can be measured to high accuracy at hadron colliders. The transverse momentum is caused by a partonic recoil, and is determined by QCD dynamics. We compute the single and double-differential transverse momentum distributions for fully inclusive Z/γ∗ production including leptonic decay to next-to-next-to-leading order (NNLO) in perturbative QCD. We also compute the same distributions normalised to the cross sections for inclusive Z/γ∗ production, i.e. integrated over the transverse momentum of the lepton pair. We compare our predictions for the fiducial cross sections to the 8 TeV data set from the ATLAS and CMS collaborations, which both observed a tension between data and NLO theory predictions, using the experimental cuts and binning. We find that the inclusion of the NNLO QCD effects does not fully resolve the tension with the data for the unnormalised pZT distribution. However, we observe that normalising the NNLO Z-boson transverse momentum distribution by the NNLO Drell-Yan cross section substantially improves the agreement between experimental data and theory, and opens the way for precision QCD studies of this observable

    Low-energy Antiproton Interaction with Helium

    Get PDF
    An ab initio potential for the interaction of the neutral helium atom with antiprotons and protons is calculated using the Born-Oppenheimer approximation. Using this potential, the annihilation cross section for antiprotons in the energy range 0.01 microvolt to 1 eV is calculated.Comment: 13 pages, 7 figures, LaTe

    A framework for optimization of diffusion-weighted MRI protocols for large field-of-view abdominal-pelvic imaging in multicenter studies.

    Get PDF
    PURPOSE: To develop methods for optimization of diffusion-weighted MRI (DW-MRI) in the abdomen and pelvis on 1.5 T MR scanners from three manufacturers and assess repeatability of apparent diffusion coefficient (ADC) estimates in a temperature-controlled phantom and abdominal and pelvic organs in healthy volunteers. METHODS: Geometric distortion, ghosting, fat suppression, and repeatability and homogeneity of ADC estimates were assessed using phantoms and volunteers. Healthy volunteers (ten per scanner) were each scanned twice on the same scanner. One volunteer traveled to all three institutions in order to provide images for qualitative comparison. The common volunteer was excluded from quantitative analysis of the data from scanners 2 and 3 in order to ensure statistical independence, giving n = 10 on scanner 1 and n = 9 on scanners 2 and 3 for quantitative analysis. Repeatability and interscanner variation of ADC estimates in kidneys, liver, spleen, and uterus were assessed using within-patient coefficient of variation (wCV) and Kruskal-Wallis tests, respectively. RESULTS: The coefficient of variation of ADC estimates in the temperature-controlled phantom was 1%-4% for all scanners. Images of healthy volunteers from all scanners showed homogeneous fat suppression and no marked ghosting or geometric distortion. The wCV of ADC estimates was 2%-4% for kidneys, 3%-7% for liver, 6%-9% for spleen, and 7%-10% for uterus. ADC estimates in kidneys, spleen, and uterus showed no significant difference between scanners but a significant difference was observed in liver (p < 0.05). CONCLUSIONS: DW-MRI protocols can be optimized using simple phantom measurements to produce good quality images in the abdomen and pelvis at 1.5 T with repeatable quantitative measurements in a multicenter study

    Calculations for deep inelastic scattering using fast interpolation grid techniques at NNLO in QCD and the extraction of αs from HERA data

    Get PDF
    The extension of interpolation-grid frameworks for perturbative QCD calculations at next-to-next-to-leading order (NNLO) is presented for deep inelastic scattering (DIS) processes. A fast and flexible evaluation of higher-order predictions for any a posteriori choice of parton distribution functions (PDFs) or value of the strong coupling constant is essential in iterative fitting procedures to extract PDFs and Standard Model parameters as well as for a detailed study of the scale dependence. The APPLfast project, described here, provides a generic interface between the parton-level Monte Carlo program NNLOjet and both the APPLgrid and fastNLO libraries for the production of interpolation grids at NNLO accuracy. Details of the interface for DIS processes are presented together with the required interpolation grids at NNLO, which are made available. They cover numerous inclusive jet measurements by the H1 and ZEUS experiments at HERA. An extraction of the strong coupling constant is performed as an application of the use of such grids and a best-fit value of αs(MZ)=0.1170(15)exp(25)th is obtained using the HERA inclusive jet cross section data
    corecore