14,643 research outputs found
Ludics and its Applications to natural Language Semantics
Proofs, in Ludics, have an interpretation provided by their counter-proofs,
that is the objects they interact with. We follow the same idea by proposing
that sentence meanings are given by the counter-meanings they are opposed to in
a dialectical interaction. The conception is at the intersection of a
proof-theoretic and a game-theoretic accounts of semantics, but it enlarges
them by allowing to deal with possibly infinite processes
A feasible algorithm for typing in Elementary Affine Logic
We give a new type inference algorithm for typing lambda-terms in Elementary
Affine Logic (EAL), which is motivated by applications to complexity and
optimal reduction. Following previous references on this topic, the variant of
EAL type system we consider (denoted EAL*) is a variant without sharing and
without polymorphism. Our algorithm improves over the ones already known in
that it offers a better complexity bound: if a simple type derivation for the
term t is given our algorithm performs EAL* type inference in polynomial time.Comment: 20 page
Unification and Logarithmic Space
We present an algebraic characterization of the complexity classes Logspace
and NLogspace, using an algebra with a composition law based on unification.
This new bridge between unification and complexity classes is inspired from
proof theory and more specifically linear logic and Geometry of Interaction.
We show how unification can be used to build a model of computation by means
of specific subalgebras associated to finite permutations groups. We then prove
that whether an observation (the algebraic counterpart of a program) accepts a
word can be decided within logarithmic space. We also show that the
construction can naturally represent pointer machines, an intuitive way of
understanding logarithmic space computing
Recent Results from the SIMPLE Dark Matter Search
SIMPLE is an experimental search for evidence of spin-dependent dark matter,
based on superheated droplet detectors using CClF. We report
preliminary results of a 0.6 kgdy exposure of five one liter devices, each
containing 10 g active mass, in the 1500 mwe LSBB (Rustrel, France). In
combination with improvements in detector sensitivity, the results exclude a
WIMP--proton interaction above 5 pb at M = 50 GeV/c.Comment: 6 pages, 2 figures,contribution to IDM2004, Sept. 6-10, 2004,
Edinburgh, U
Two loop detection mechanisms: a comparison
In order to compare two loop detection mechanisms we describe two calculi for theorem proving in intuitionistic propositional logic. We call them both MJ Hist, and distinguish between them by description as `Swiss' or `Scottish'. These calculi combine in different ways the ideas on focused proof search of Herbelin and Dyckhoff & Pinto with the work of Heuerding emphet al on loop detection. The Scottish calculus detects loops earlier than the Swiss calculus but at the expense of modest extra storage in the history. A comparison of the two approaches is then given, both on a theoretic and on an implementational level
Microwave responses of the western North Atlantic
Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized
Gaussian process model based predictive control
Gaussian process models provide a probabilistic non-parametric modelling approach for black-box identification of non-linear dynamic systems. The Gaussian processes can highlight areas of the input space where prediction quality is poor, due to the lack of data or its complexity, by indicating the higher variance around the predicted mean. Gaussian process models contain noticeably less coefficients to be optimized. This paper illustrates possible application of Gaussian process models within model-based predictive control. The extra information provided within Gaussian process model is used in predictive control, where optimization of control signal takes the variance information into account. The predictive control principle is demonstrated on control of pH process benchmark
Classical Structures Based on Unitaries
Starting from the observation that distinct notions of copying have arisen in
different categorical fields (logic and computation, contrasted with quantum
mechanics) this paper addresses the question of when, or whether, they may
coincide. Provided all definitions are strict in the categorical sense, we show
that this can never be the case. However, allowing for the defining axioms to
be taken up to canonical isomorphism, a close connection between the classical
structures of categorical quantum mechanics, and the categorical property of
self-similarity familiar from logical and computational models becomes
apparent.
The required canonical isomorphisms are non-trivial, and mix both typed
(multi-object) and untyped (single-object) tensors and structural isomorphisms;
we give coherence results that justify this approach.
We then give a class of examples where distinct self-similar structures at an
object determine distinct matrix representations of arrows, in the same way as
classical structures determine matrix representations in Hilbert space. We also
give analogues of familiar notions from linear algebra in this setting such as
changes of basis, and diagonalisation.Comment: 24 pages,7 diagram
- …