16 research outputs found
Cervical ripening before surgical evacuation of first-trimester pregnancy: a comparison between misoprostol and trinitroglycerin
Introduction: Termination of pregnancy through curettage in the first trimester requires cervical ripening (CR) which can be induced by medicinal or mechanical methods. In the pharmaceutical method, vaginal administration of misoprostol, as well as vaginal trinitroglycerin (TNG), has been shown to induce effective CR. This study was conducted with the aim of comparing vaginal misoprostol and vaginal TNG in the CR of women candidates for the first-trimester curettage.
Materials and Methods: This double-blind clinical trial study was conducted on 168 pregnant women with a gestational age of less than 14 weeks who were candidates for curettage. Participants were randomly divided into two groups receiving vaginally either TNG (400 µgr)(n=87) or misoprostol (400 µgr) (n=81). Then, the state of CR and the need for mechanical dilatation were compared between the two groups. Also, the presence of any side effects caused by drug use was determined.
Results: The percentage of CR in the misoprostol group (67.9%) was significantly higher than in the TNG group (32.2%) (P0.001). Generally, the rate of complications in the TNG group (35.6%) was significantly higher compared with the misoprostol group (13.6%) (P>0.001).
Conclusion: Vaginally Misoprostol is more effective than vaginally TNG on CR of first-trimester curettage as well as it significantly reduces the need for mechanical dilatation of the cervix
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Oral health-related quality of life in patients with oral squamous cell carcinoma: A case–control study
Background: The prevalence of oral squamous cell carcinoma (OSCC) has increased in recent years. With the development of various treatments, the mortality rate has decreased and more people are living with the consequences of the disease and its treatment, which can have a great impact on the quality of life. Some questionnaires measure the impact of the disease on daily activities and patient behavior. In this study, the oral health-related quality of life (OHRQOL) was assessed through the Oral Health Impact Profile (OHIP)-14 questionnaire between the OSCC patient and control groups.
Materials and Methods: In this cross-sectional study, the OHIP-14 questionnaire was given to 51 OSCC patients who had completed the treatment at least 6 months before participating in this study and 51 healthy individuals, and we used the Chi-square test, independent sample t-test, one-way ANOVA, and linear regression in three models. P = 0.05 was considered statistically significant.
Results: The mean age of patients was 55.86 ± 15.04 years and the control group was 54.96 ± 14.08 years. Women made up 51% of patients. The mean OHIP score was 22.84 ± 11.42 in the patient group and 17.92 ± 9.23 in the control group, which indicates a significant (P = 0.005) difference between the two groups according to the independent sample t-test.
Conclusion: The OHRQOL of patients has significantly decreased compared to the control group. Surgery had the lowest quality reduction, and combined surgical treatment with radiotherapy and chemotherapy had the highest reduction in the OHRQOL. It is recommended to have regular follow-up sessions and to have a proper diet during and after treatment
Chondroid syringoma of the forearm: A case report of a rare localization
Chondroid syringoma (CS) is an uncommon benign adnexal tumor of the skin with eccrine and apocrine origin, which usually involves the head and neck region. The presentation of CS in other areas of the body is rare. A 45-year-old male patient presented to the dermatology clinic with a chief complaint of a painless, slow-growing mass on his left forearm, which gradually developed over the course of 2 years. A solitary, firm, purple, mobile, non-tender nodule was located in the distal part of left dorsal forearm, which was 1.8 cm in diameter. The tumor was surgically excised and sent for the histopathological evaluation. Results of biopsy and hematoxylin and eosin staining confirmed the diagnosis of CS and showed no evidence of malignancy. Although CS is an uncommon tumor in uppr limb region, it should be considered as one of the differential diagnoses, when dealing with tumors of this area
Correlation of Low Levels of α-1 Antitrypsin and Elevation of Neutrophil to Lymphocyte Ratio with Higher Mortality in Severe COVID-19 Patients
Background. Variations in COVID-19 prevalence, severity, and mortality rate remain ambiguous. Genetic or individual differences in immune response may be an explanation. Moreover, hyperinflammation and dysregulated immune response are involved in the etiology of severe forms of COVID-19. Therefore, the aim of the present study was to analyze serum alpha-1 antitrypsin (AAT) levels, as an acute-phase plasma protein with immunomodulatory effect and neutrophil to lymphocyte ratio (NLR) as a marker of inflammation response in severe COVID-19 illness. Methods. In this retrospective observational cohort study, 64 polymerase chain reaction (PCR) positive COVID-19 hospitalized patients were studied for AAT, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), troponin, complete blood count (CBC), random blood sugar, serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and arterial oxygen saturation (O2sat) at admission and during hospitalization. Results. The results showed that hospitalized patients with COVID-19 had low serum levels of AAT and high CRP levels at the first days of hospitalization. In particular, the percentages of individuals with low, normal, and high AAT levels were 7.80%, 82.80%, and 9.40%, respectively, while high and low values of CRP accounted for 86.70% and 13.30% of patients. Most of the patients had an upward neutrophil to lymphocyte ratio (NLR) trend, with a higher mortality rate (p<0.05) and troponin levels (p<0.05). However, comorbidities, CRP alterations, ESR alterations, nonfasting blood sugar, SGOT, SGPT, O2sat, RBC, and PLT values were not significantly different between the NLR downward and upward trend groups. Conclusions. The current study revealed that severe COVID-19 patients had low serum AAT levels related to CRP values. Therefore, AAT response may be considered as a new mechanism by which some COVID-19 patients show immune dysregulation and more severe symptoms
Local Carpet Bombardment of Immobilized Cancer Cells With Hydrodynamic Cavitation
This study presents a method based on carpet bombardment of immobilized cells with cavitating flows. For this, immobilized cancer cell lines are exposed to micro scale cavitating flows from the tip of a micro nozzle under the effect of cavitation microbubbles. The deformation as a result of cavitation bubbles on exposed cells differs from one cell type to another. Therefore, the difference in cell deformation upon cavitation exposure (carpet bombardment) acts as a valuable indicator for cancer diagnosis. The developed system is tested on HCT-116 (Human Colorectal Carcinoma), MDA-MB-231 (Breast Adenocarcinoma), ONCO-DG-1 (Ovarian Adenocarcinoma) cell lines due to their clinical importance. The mechanical effects of cavitation are examined by considering the single-cell lysis effect (the cell membrane is ruptured, and the cell is destroyed) with the help of the Scanning Electron Microscopy (SEM) technique. Our study proposes a promising label-free method for the potential use in cancer diagnosis with cavitation bubble collapse, where microbubbles could be precisely controlled and directed to the desired locations, as well as the characterization of the biophysical properties of cancer cells. The proposed approach tool has the advantages of label-free approach, simple structure and low cost and is a substantial alternative for the existing tools
The effect of transdermal nitroglycerin on pain control in diabetic patients with peripheral neuropathy
Background
Despite high prevalence of diabetic peripheral neuropathy there is no definite treatment for the condition. The present study was conducted to assess the efficacy of transdermal nitroglycerin patch in pain control of patients with DPN.
Methods
This randomized, double-blind, crossover study was conducted on 30 patients with symmetric distal peripheral neuropathy and good glycemic control. The patients were randomly assigned to receive nitroglycerin transdermal and placebo patches in two 4-week stages. The severity of pain and other neuropathic sensory symptoms were assessed at the end of each course.
Results
Mean reduction of pain severity was more prominent in the NTG group compared to placebo group of the study (p = 0.048) at least during the first phase of the study. Except for mood and sleep, a significant reduction in all Brief Pain Inventory scores was noted in the drug group (all corrected p < 0.05). SF-MPQ also showed the drug patch to be effective in improving different aspects of pain measured using McGill Pain Questionnaire, except for Role–emotional.
Conclusions
It could be concluded that nitroglycerin plasters can effectively help alleviate pain in patients with diabetic neuropathy