77 research outputs found
The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives
Increasing oil palm plantations, both for obtaining crude palm oil (CPO) and for the production of biobased products, have generated growing concern about the impact of greenhouse gas (GHG) emissions on the environment. Colombia has the potential to produce sustainable biobased products from oil palm. Nevertheless, national GHG emissions have not yet been reported by this sector. Achieving the collection of the total primary data from the oil palm sector, in Colombia, entails a tremendous challenge. Notwithstanding, for this study, the data collection of 70% of the production of fresh fruit bunches (FFB) was achieved. Therefore, current situation of CPO production in Colombia is analyzed, including 1) GHG emissions calculation, 2) net energy ratio (NER), and 3) economic performance. Moreover, the analysis includes two future scenarios, where the CPO production chain is optimized to reduce GHG emissions. Future scenario A produces biodiesel (BD), biogas, cogeneration, and compost; while future scenario B produces BD, biogas, cogeneration, and pellets. The methodology, for all the scenarios, includes life-cycle assessment and economic analysis evaluation. The results show a significant potential for improving the current palm oil production, including a 55% reduction in GHG emissions. The impact of land-use change must be mitigated to reduce GHG emissions. Therefore, a sustainable oil palm expansion should be in areas with low carbon stock or areas suitable/available to the crop (e.g., cropland, pastureland). Avoiding the deforestation of natural forests is required. Besides, crop yield should be increased to minimize the land use, using biomass to produce biobased products, and capture biogas to reduce methane emissions. In the biodiesel production life-cycle, the NER analysis shows the fossil energy consumed is lower than the renewable energy produced. Regarding the economic performance, it shows that in an optimized production chain, the capital expenditure and operational expenditure will decrease by approximately 20%
The role of bioenergy and biochemicals in CO2 mitigation through the energy system - a scenario analysis for the Netherlands
Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost-efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transition, there is also need to demonstrate the impact on the energy system of technology development, biomass and fossil fuel prices. We aim to close this gap by assessing least-cost pathways to 2030 for a number of scenarios applied to the energy system of the Netherlands, using a cost-minimization model. The type and magnitude of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national emissions between 82 and 178 Mt CO2. High technology development leads to additional 100-270 PJ of biomass consumption and 8-20 Mt CO2 emission reduction compared to low technology development counterparts. In high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61-87% of bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show lower biochemical output by 50-75%, do not supply RJFs and do not utilize additional biomass compared to high technology development. In most scenarios the emission reduction targets for the Netherlands are not met, as additional reduction of 10-45 Mt CO2 is needed. Stronger climate policy is required, especially in view of fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonetheless, high technology development is a no-regrets option to realize deep emission reduction as it also ensures stable growth for the bioeconomy even under unfavourable conditions.</p
Mapping land use changes resulting from biofuel production and the effect of mitigation measures
Many of the sustainability concerns of bioenergy are related to direct or indirect land use change (LUC) resulting from bioenergy feedstock production. The environmental and socio-economic impacts of LUC highly depend on the site-specific biophysical and socio-economic conditions. The objective of this study is to spatiotemporally assess the potential LUC dynamics resulting from an increased biofuel demand, the related greenhouse gas (GHG) emissions, and the potential effect of LUC mitigation measures. This assessment is demonstrated for LUC dynamics in Brazil towards 2030, considering an increase in the global demand for bioethanol as well as other agricultural commodities. The potential effects of three LUC mitigation measures (increased agricultural productivity, shift to second-generation ethanol, and strict conservation policies) are evaluated by using a scenario approach. The novel modelling framework developed consists of the global Computable General Equilibrium model MAGNET, the spatiotemporal land use allocation model PLUC, and a GIS-based carbon module. The modelling simulations illustrate where LUC as a result of an increased global ethanol demand (+26x10(9)L ethanol production in Brazil) is likely to occur. When no measures are taken, sugar cane production is projected to expand mostly at the expense of agricultural land which subsequently leads to the loss of natural vegetation (natural forest and grass and shrubland) in the Cerrado and Amazon. The related losses of above and below ground biomass and soil organic carbon result in the average emission of 26gCO(2-)eq/MJbioethanol. All LUC mitigation measures show potential to reduce the loss of natural vegetation (18%-96%) as well as the LUC-related GHG emissions (7%-60%). Although there are several uncertainties regarding the exact location and magnitude of LUC and related GHG emissions, this study shows that the implementation of LUC mitigation measures could have a substantial contribution to the reduction of LUC-related emissions of bioethanol. However, an integrated approach targeting all land uses is required to obtain substantial and sustained LUC-related GHG emission reductions in general
Performance of batteries for electric vehicles on short and longer term
In this work, the prospects of available and new battery technologies for battery electric vehicles (BEVs) are examined. Five selected battery technologies are assessed on battery performance and cost in the short, medium and long term. Driving cycle simulations are carried out to assess the influence of the batteries on the energetic, environmental and economic performance of BEVs in the medium term. Well-to-wheel energy consumption and emissions of BEVs are lowest for lithium-ion batteries; 314-374 Wh km -1 and 76-90 gCO 2eq km -1 (assuming 593 gCO 2 kWh -1 for European electricity mix), compared to 450-760 Wh km -1 and 150-170 gCO 2eq km -1 for petrol and diesel cars. The total driving costs are lowest for ZEBRA batteries (0.43-0.62 kWh -1 and driving ranges are below 200 km, BEVs become cost competitive to diesel cars. For all batteries, it remains a challenge to simultaneously meet requirements on specific energy, specific power, efficiency, cycle life, lifetime, safety and costs in the medium or even long term. Only lithium-ion batteries could possibly attain all conditions in the medium term. Batteries that do not contain lithium have best perspectives to attain low costs. © 2012 Elsevier B.V. All rights reserved
Competing uses of biomass : Assessment and comparison of the performance of bio-based heat, power, fuels and materials
The increasing production of modern bioenergy carriers and biomaterials intensifies the competition for different applications of biomass. To be able to optimize and develop biomass utilization in a sustainable way, this paper first reviews the status and prospects of biomass value chains for heat, power, fuels and materials, next assesses their current and long-term levelized production costs and avoided emissions, and then compares their greenhouse gas abatement costs. At present, the economically and environmentally preferred options are wood chip and pellet combustion in district heating systems and large-scale cofiring power plants (75-81 US/tCO(2)-eq(avoided)) or biomaterials (-60 to 50 /tCO(2)-eq(avoided) for PLA; negative costs represent cost- effective options). In the longer term, the cultivation and use of lignocellulosic energy crops can play an important role in reducing the costs and improving the emission balance of biomass value chains. Key conversion technologies for lignocellulosic biomass are large-scale gasification (bioenergy and biomaterials) and fermentation (biofuels and biomaterials). However, both routes require improvement of their technological and economic performance. Further improvements can be attained by biorefineries that integrate different conversion technologies to maximize the use of all biomass components. (C) 2014 Elsevier Ltd. All rights reserved
Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change
Cattle production is characterized by high land requirements, and greenhouse gas (GHG) emissions associated with the resulting land use change (LUC) and cradle to farm gate processes. Intensification of cattle production systems is considered an important strategy for mitigating anthropogenic GHG emissions. When categorizing production practices into three systems, i.e. pasture-based, mixed and industrial systems, intensification can either take place within one system or through the transition to another more productive system. This study investigates the impacts of these two pathways on farm gate emissions and LUC-related emissions (expressed in kg CO2-eq per kg of milk or beef) in nine world regions. First, a review is conducted of bottom-up studies on farm gate emissions (without LUC) from dairy production in Europe and beef production in North America and Brazil. Then, a global data set on GHG emissions from cattle production is used to discuss the GHG emission impacts of the two development pathways in other regions. Finally, the GLOBIOM model is applied to perform a global assessment of land occupation and LUC-related emissions. For dairy in Europe, farm gate emission reductions of 1%–14% are found for intensification within one system and 2%–26% for system transitions. In Europe as well as other developed regions, the comparative influence of both pathways on the GHG balance largely depends on the specific design of the initial and final production systems. In developing countries especially, there is a greater potential for emission reductions through intensification within the pasture-based system. The additional reduction potential of moving from pasture-based to mixed and industrial production is limited. Also, emission reductions of intensification within the mixed system are smaller compared to the pasture-based system. For beef production in Brazil, intensification within pasture-based systems can attain significant farm gate emission reductions (>50%). The same is true for pasture-based systems in other developing regions and also some developed regions. Furthermore, the additional GHG reduction potentials of moving from pasture-based to mixed systems, and of intensification within mixed systems are larger for beef than for dairy. Although both the dairy and beef sector can often attain significant farm gate emission reductions through intensification within pasture-based systems, the transition to mixed systems is important to reduce land occupation and LUC-related emissions. LUC mitigation is considered to be the most important GHG mitigation strategy for cattle production in Sub-Saharan Africa and Latin America. Important, but technically and economically constrained strategies to reduce both farm gate and LUC-related emissions include increasing the productivity of grassland and cropland, and increasing the animal productivity through improved feed quality
Renewable jet fuel supply scenarios in the European Union in 2021–2030 in the context of proposed biofuel policy and competing biomass demand
This study presents supply scenarios of nonfood renewable jet fuel (RJF) in the European Union (EU) toward 2030, based on the anticipated regulatory context, availability of biomass and conversion technologies, and competing biomass demand from other sectors (i.e., transport, heat, power, and chemicals). A cost optimization model was used to identify preconditions for increased RJF production and the associated emission reductions, costs, and impact on competing sectors. Model scenarios show nonfood RJF supply could increase from 1 PJ in 2021 to 165–261 PJ/year (3.8–6.1 million tonne (Mt)/year) by 2030, provided advanced biofuel technologies are developed and adequate (policy) incentives are present. This supply corresponds to 6%–9% of jet fuel consumption and 28%–41% of total nonfood biofuel consumption in the EU. These results are driven by proposed policy incentives and a relatively high fossil jet fuel price compared to other fossil fuels. RJF reduces aviation-related combustion emission by 12–19 Mt/year CO2-eq by 2030, offsetting 53%–84% of projected emission growth of the sector in the EU relative to 2020. Increased RJF supply mainly affects nonfood biofuel use in road transport, which remained relatively constant during 2021–2030. The cost differential of RJF relative to fossil jet fuel declines from 40 €/GJ (1,740 €/t) in 2021 to 7–13 €/GJ (280–540 €/t) in 2030, because of the introduction of advanced biofuel technologies, technological learning, increased fossil jet fuel prices, and reduced feedstock costs. The cumulative additional costs of RJF equal €7.7–11 billion over 2021–2030 or €1.0–1.4 per departing passenger (intra-EU) when allocated to the aviation sector. By 2030, 109–213 PJ/year (2.5–4.9 Mt/year) RJF is produced from lignocellulosic biomass using technologies which are currently not yet commercialized. Hence, (policy) mechanisms that expedite technology development are cardinal to the feasibility and affordability of increasing RJF production
- …