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Abstract

Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost-efficient tra-

jectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of

emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transi-

tion, there is also need to demonstrate the impact on the energy system of technology development, biomass

and fossil fuel prices. We aim to close this gap by assessing least-cost pathways to 2030 for a number of scenar-
ios applied to the energy system of the Netherlands, using a cost-minimization model. The type and magnitude

of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to

mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national

emissions between 82 and 178 Mt CO2. High technology development leads to additional 100–270 PJ of biomass

consumption and 8–20 Mt CO2 emission reduction compared to low technology development counterparts. In

high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and

carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61–87% of

bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show
lower biochemical output by 50–75%, do not supply RJFs and do not utilize additional biomass compared to

high technology development. In most scenarios the emission reduction targets for the Netherlands are not met,

as additional reduction of 10–45 Mt CO2 is needed. Stronger climate policy is required, especially in view of

fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonethe-

less, high technology development is a no-regrets option to realize deep emission reduction as it also ensures

stable growth for the bioeconomy even under unfavourable conditions.

Keywords: bioeconomy, CO2 mitigation, cost-minimization, emerging sectors, scenario analysis

Received 28 July 2016; accepted 17 February 2017

Introduction

In line with long-term climate targets agreed upon at

the 21st Conference of Parties in Paris (UNFCCC, 2015),

the European Union (EU) set out to increase its renew-

able energy supply to 27% and to achieve 40% green-

house gas (GHG) emission reduction by 2030 compared

to 1990, towards a 80–95% reduction by 2050 (EC, 2015).

Large-scale modern bioenergy deployment, carbon cap-

ture and storage (CCS), and their combination (bioen-

ergy with carbon capture and storage; BECCS) are

among the key energy supply and carbon mitigation

options required to embark on cost-efficient trajectories

that pursue climate goals (IPCC, 2014; Rose et al., 2014;

Matthews et al., 2015; Winchester & Reilly, 2015).

Within the EU, bioenergy supply is shown to be sig-

nificant in sectors such as heat and road transport (Stra-

len et al., 2013). Increasingly, there is evidence to

suggest that emerging bioeconomy sectors such as avia-

tion and chemicals, which have few or no other renew-

able alternatives than biomass, and CCS and BECCS

will also be needed. Based on mid-term demand projec-

tions, biochemicals and bioplastics (frequently referred

to as nonenergy uses of biomass) may consume 9–24%
of global biomass demand by 2050 (Piotrowski et al.,

2015). Other studies show 15–17% of total biomass to be

used for nonenergy applications (18–27 EJ yr�1) and to

supply approximately 7–11 EJ yr�1 of global nonenergy

biomass products (Daioglou et al., 2015). In other
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sectors, such as aviation, the EU has the ambition to

reach 88 PJ (2 Mt, assuming 44 GJ t�1 heating value)

renewable jet fuel (RJF) consumption, which is about

3.7% of its projected jet fuel demand by 2020 (EC, 2003,

2011). These new sectors are particularly relevant for

countries with relatively large refining capacity and

energy intensive industry such as the Netherlands. The

Netherlands consumes about a quarter of its total final

energy for nonenergy purposes (585 PJ in 2013, CBS,

2016) and within the EU, it has the largest petrochemi-

cal capacity next to Germany (OGJ, 2012). Regarding

emission reduction, at a global level, BECCS would

need to contribute between 2 and 10 Gt CO2 yr�1 in

2050 in order to ensure compliance with the 2 °C target

(4–22% of the 1990 baseline; Fuss et al., 2014). Based on

Rose et al. (2014), modern bioenergy supply may reach

37% (or up to about 250 PJ) over total primary energy

supply by 2050 and is largely combined with BECCS.

Despite these expectations, comprehensive assessments

of extended bioeconomy sectors (i.e. aviation, chemi-

cals) in energy system models, interactions with other

renewable energy sources (RES; e.g. wind or solar) and

mitigation technologies (i.e. CCS, BECCS) at a national

or regional level, are scarce.

Such an analysis requires an integrated energy sys-

tems assessment framework that takes into account

emerging bioeconomy sectors next to modern bioenergy

and that addresses key factors of uncertainty with suffi-

cient level of detail on the energy system’s structure

and on the complex flows of the petrochemical industry.

To obtain the necessary detail, we focus on the energy

system of the Netherlands, which requires a significant

transformation for the country to meet its renewable

energy and GHG mitigation goals, in line with the EU

targets (Roelofsen et al., 2016; Vuuren et al., 2016). Albeit

having an efficient agricultural sector, the Netherlands

is dependent on biomass imports in order to support

large-scale bioeconomy developments, similar to the EU

(Stralen et al., 2013). This is deemed possible due to its

advanced logistics infrastructure. While modelling out-

comes are pertinent to the Netherlands, they are useful

to provide insights in the implications of large-scale

bioeconomy developments also in the EU.

Our earlier study incorporated the chemicals and avia-

tion sector in a national energy systems model of the

Netherlands and demonstrated that biomass conversion

technologies may be cost-competitive compared to other

fossil and renewable alternatives by 2030 to achieve

renewable energy goals (Tsiropoulos, 2016). With respect

to biomass conversion, industrial heat from biomass, lig-

nocellulosic sugar production, biochemicals from sugar

fermentation and Fischer–Tropsch (FT) road transport

fuels from solid biomass gasification were shown to be

most promising options. These findings are in line with

other research (Ren & Patel, 2009; Ren et al., 2009; Saygin

et al., 2013, 2014; Gerssen-Gondelach et al., 2014). How-

ever, our earlier study also showed that while the renew-

able energy technology portfolio was stimulated by

renewable energy policies, emission reduction targets of

40% by 2030, compared to 1990, were not met. Therefore,

additional insights are needed as to the required precon-

ditions to pursue those targets. One limitation of the

abovementioned study is that it only assessed the influ-

ence of technology development as a factor of future

uncertainty, while other crucial parameters such as vary-

ing fossil fuel prices and availability of low-cost biomass

in combination with technological progress may also

affect bioeconomy developments and the pathways to

emission reduction. These uncertainties need to be

assessed under a technology-neutral setting, with climate

policy such as a CO2 tax being the only driver for the

deployment of a cost-optimal technology portfolio.

Such an assessment is performed in the present study

using a national cost-minimization linear programming

model developed for the Netherlands (MARKet ALloca-

tion MARKAL-NL-UU; Tsiropoulos, 2016) that apart

from technology characterization of the fossil energy

system also includes key biomass conversion technolo-

gies, other renewables and mitigation options (CCS,

BECCS). Using scenario assessment for a combination

of uncertainty factors on technology development, bio-

mass cost-supply and fossil fuel prices, we estimate the

achieved CO2 emission reduction, the required techno-

logy portfolio, the demand for biomass and supply of

bioenergy and biochemicals in each case.

Materials and methods

We focus on bioeconomy activities that relate with the energy

system and the chemical industry (i.e. bioenergy, biochemicals)

that have the potential to replace fossil fuels in the energy sys-

tem. Other economic activities based on biomass, for example

food, feed, traditional biomass uses (lumber products), are not

included in the framework. We translate key parameters of

future uncertainty of the bioeconomy development (technology

development, biomass cost-supply, fossil fuel prices) to scenar-

ios and then perform scenario analysis by comparing outputs

derived from a cost-minimization linear programming energy

system model developed for the Netherlands.

Model

The MARKAL-NL-UU applied in this study uses cost-minimi-

zation linear programming techniques to define the technology

portfolio required to meet demand for energy (electricity, heat,

fuels) and chemicals that lead to least total system costs. The

model can be described by three core modules: energy supply,

energy and chemicals conversion, and energy and chemicals

demand.

© 2017 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1489–1509
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The electricity sector and the CCS technology portfolio for

the Netherlands are described in van den Broek et al. (2008,

2011). The model’s extension to the road transport sector is

included in van Vliet et al. (2011). Finally, emerging bioecon-

omy sectors have been included by Tsiropoulos (2016). The

technology portfolio of MARKAL-NL-UU for electricity, heat,

road transport and jet fuels, and chemicals is described in

Tables S1–S3.

Energy supply

In the energy supply module, cost-supply trajectories of fossil,

nuclear and biomass resources are included. For fossil fuels, the

price develops according to the International Energy Agency

World Energy Outlook 2015 (IEA-WEO) New Policies Scenario

(OECD/IEA, 2015), unless stated otherwise. Fossil fuel price

variation is a key aspect of future uncertainty, which is taken

into account in scenario assessment (section ‘Fossil fuel prices’).

Biomass cost-supply curves are estimated based on the sour-

cing region (domestic, European, global) and are specified for

different biomass types. Road-side costs and potentials for bio-

mass are determined for 2010–2030, based on the Intelligent

Energy Europe project Biomass Policies (Elbersen et al., 2015).

In this database, biomass represents the net available potential

for bioenergy, thereby excluding competition with traditional

sectors such as food, feed and fibres. Costs refer to market

prices for already traded biomass types and to road-side costs

for biomass markets that are not developed (Elbersen et al.,

2015). To these costs, we add transport costs to the Netherlands

using a geographical explicit biomass intermodal transport

model (BIT-UU; described in Hoefnagels et al., 2014a,b). Bio-

mass transport costs, calculated at Nomenclature of territorial

units for statistics 2 level, are aggregated based on the

weighted average for 4 EU regions as described in Tsiropoulos

(2016). From the regional biomass supply potential, it is

assumed that approximately 5% may be available for export to

the Netherlands, based on the share of the Dutch total primary

energy supply over the EU’s to 2030. In OECD/IEA (2014), the

EU demand is 61 EJ under the 450 ppm scenario in 2030. For

comparison, the Dutch demand is 3.2 EJ and the assumed bio-

mass in 2030 is about 430 PJ or 13% of the country’s total pri-

mary energy supply.

These assumptions may lead to conservative biomass cost-

supply estimates for two reasons. Firstly, transport costs are

based on wood chip logistics, thereby ignoring cost-efficiency

gains that can be achieved if biomass is densified at the sour-

cing region, for example, to wood pellets. Secondly, each coun-

try may supply larger potential than the 5% we allocated if

markets are well-developed. These factors are addressed in sce-

narios (section ‘Biomass cost-supply’).

Next to biomass from EU sources, five commodities from

extra-EU sources are included, namely raw sugar, wood pel-

lets, first- and second-generation ethanol, vegetable oil and bio-

diesel. Ultimately, it depends on the total production system

costs, which include feedstock and conversion, to indicate the

cost-optimal use of intra-EU or extra-EU resources. A total of

400 PJ of solid biomass and 50 PJ of liquid biomass are

assumed to be available for imports to the Netherlands. Such

potential is approximately 26 Mt in wood pellet equivalent,

which is rather large considering that it corresponds to global

wood pellet consumption in 2015 (about 25.5 Mt; AEBIOM

(2015)). However, there is sufficient evidence that suggests that

these volumes may be available (Chum et al., 2011; Ganzevles,

2014; Smeets, 2014). The influence of extra-EU import is

assessed in a separate scenario, which assumes that only

domestic and intra-EU biomass is available (section ‘Biomass

cost-supply’). CO2 emissions from biomass production in the

Netherlands contribute to the national total CO2 emissions.

Indirect emissions from extraction and import of fossil

resources to the Netherlands or biomass production outside

the Netherlands do not contribute to the national total.

Technologies for energy and chemicals conversion

The model includes a large portfolio of fossil (natural gas,

oil, coal), nuclear and renewable energy technologies (e.g.

biomass conversion, wind turbines, photovoltaics) that con-

vert primary resources to electricity, heat, fuels for the energy

system, and feedstocks or end products for the fossil-based

and bio-based chemical industry. Fossil, nuclear and renew-

able energy conversion technologies are characterized based

on their cost structure at a specific year and scale and techni-

cal parameters (process energy input, process efficiency).

Annual costs consist of capital investment costs (e.g. process

components, buildings, contingency), fixed costs (operation

and maintenance, administrative costs) and variable costs

(e.g. feedstock, utilities, labour). CO2 emissions from conver-

sion of primary to secondary energy carriers represent the

emissions of the energy system, including industrial process

emissions. Non-CO2 GHG emissions that are not associated

with the energy system are not included in the boundaries of

the model (e.g. methane emissions by activities in agricul-

ture). These represent approximately 16% of national total

GHG emissions in 2014 (Table S9).

Biorefineries (biochemical and thermochemical) are also

included in the model. Conventional coal gasification and FT-

synthesis to fuels is excluded as an option. Similar to other

multi-output processes such as combined heat and power

plants, biorefineries deliver outputs to several sectors (e.g. to

fuels and electricity) as opposed to, for example a wind tur-

bine, which delivers only to the electricity sector. This enables

access to different demand markets in direct competition with

other technologies thus reducing total system costs.

An overview of technologies is presented in Tables S1–S3.

The cost structures are described in Tables S4–S7, and the

cross-sectoral flows are described in Tsiropoulos (2016).

Technology development is rather uncertain and therefore

assessed by scenarios in this study (section ‘Rate of technol-

ogy development and technology diffusion’; Figs S2 and S3).

Energy and chemicals demand

The final energy demand for electricity, heat, and the produc-

tion volume of chemicals and aviation fuels is exogenously

determined and specified for the Netherlands based on

demand projections from EC (2003), Saygin et al. (2009), Ch�eze

© 2017 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1489–1509
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et al. (2011) and ECN (2015) as described in Tsiropoulos (2016).

The final demand for road transport (liquid fuels, electricity) is

endogenously calculated based on the assumed demand for

vehicle-kilometres (van Vliet et al., 2011). While projections for

key energy applications such as heat and electricity are rela-

tively stable over time, for nonenergy uses future demand

poses higher uncertainties. This in turn can determine to a

large extent the deployment potential of biochemicals. In an

additional scenario, we assume that the chemical sector follows

a negative growth rate trajectory (section Other sensitivity sce-

narios). Demand projections are provided in Table S8 and

Fig. S1.

Scenarios

Scenario analysis of ‘if-then’ propositions is shown to be use-

ful to the extent that it provides insights that improve strate-

gic management by better understanding uncertainties and

robustness of decisions under a wide range of possible

futures. These can be stirred by strategies but can also be

influenced by uncontrolled variables (Schwartz, 1996; Moss

et al., 2010).

Baseline scenarios (Base) in this study give a plausible indica-

tion on how the energy and nonenergy system may develop if

no focus is placed on renewable energy and climate goals

beyond 2020. We then deploy a set of scenarios that assess

the effect of climate policies, namely a CO2 tax that corre-

sponds to meeting the 2 °C (OECD/IEA, 2015), in combination

with bioeconomy strategies focused on the conversion and

supply side.

Policy context of scenarios. Scenario parameters to 2020: To
assess the cost-efficient contribution of biomass and other RES

to CO2 mitigation pathways, conversion technologies should

compete on a level playing field. Scenarios that are technol-

ogy-neutral avoid distortion caused by policies or support

schemes (e.g. subsidies on specific technologies). However,

up to 2020, binding policy goals at the EU level and national

measures are already agreed and implemented. They include

support to electricity, heat and road transport fuels up to

2020 and are assumed to be achieved in all scenarios. These

include the following:

• the renewable energy share (14% for the Netherlands) and

the biofuel target (10% including double-counting of biofu-

els from waste and residues, and contribution of renewable

electricity in road transport by a factor 2.5; EU Renewable

Energy Directive [RED]; EC, 2009);

• the retirement of old coal-fired power plants built before

1990 and wind deployment as part of national plans to

meet the EU RED targets (SER, 2013);

• maximum of 25 PJ electricity produced by cofiring biomass

in coal power stations (SER, 2013);

In addition, we assume an emission tax as part of the climate

policies to 2020 (i.e. 15 € t CO2
�1 in 2020), based on the IEA-

WEO 2015 New Policies Scenario. The tax is applied to emis-

sions from all sectors (i.e. including transport and residential

heat).

Scenario parameters from 2020 onwards. Beyond 2020, all

sectors compete on a level playing field. Therefore, cost-com-

petitiveness of secondary energy carriers and chemicals is the

only determinant of technology deployment, biomass contribu-

tion to demand and achieved CO2 emission reduction.

In line with the EU Intended Nationally Determined Contri-

bution, mid-term emission reduction (2030) needs to reach 40%

compared to 1990 (EC, 2015). We use CO2 tax as the only policy

instrument that stimulates emission reduction based on the

IEA-WEO 2015 450 ppm scenario. Tax levels are 42 € t CO2
�1

in 2025 and 69 € t CO2
�1 in 2030 (OECD/IEA, 2015). The CO2

tax applies to generated emissions in the Netherlands, as

opposed to the carbon content of fossil feedstocks used. For

biochemicals, this entails that only savings from energy use in

industry and process emissions are affected by the tax and con-

tribute to CO2 emission reduction, as large part of the carbon

in biomass feedstock remains embedded in final biochemical

products. Emission savings from biochemicals may occur out-

side the geographical boundaries of the Netherlands, at their

end-of-life in demand regions. However, such savings are not

assessed in this study. Similarly, GHG emission savings may

be achieved in sectors other those of the energy system (e.g.

reduction in methane emissions in agriculture). However, these

are excluded from the scope of this study due to the dominant

role of CO2 emissions in climate change in the long-term and

their direct relationship with the energy system (Vuuren et al.,

2016).

We assess fossil fuel prices and climate policy scenarios sep-

arately. The policy context beyond 2020 as described above is

used in the reference (Ref), biomass cost-supply (LowBio, HighBio)

and fossil fuel price scenarios (LowFos, HighFos) (section ‘Scenario

definitions’; Table 1).

Scenario definitions. The emission mitigation pathways are

based on key strategies for development of biomass production

systems across the supply chain, from feedstock to conversion.

Rate of technology development and technology diffusion

(LowTech, HighTech). Technology development based on

learning and subsequent cost reductions can considerably influ-

ence the competitiveness of biomass conversion technologies.

Technology costs decline by a constant factor with each dou-

bling of cumulative capacity (BCG, 1968). However, this occurs

at a global level, which is outside of the regional scope of this

study. Incremental improvements over time such as in effi-

ciency may also affect conversion costs. These factors are not

endogenized in MARKAL-NL-UU. Therefore, we capture the

uncertainty of technical progress on cost reduction in biomass

conversion technologies and the role of BECCS to 2030 using

two technology pathways that follow low (LowTech) and high

technology (HighTech) development progress (Figs S2 and S3).

These pathways vary technology parameters and assume dif-

ferent learning rates for biomass conversion. More specifically,

the two scenarios differ in technology portfolio, rate of incre-

mental improvements, year of technology availability and

scales as described in detail in Tsiropoulos (2016). LowTech

assumes that little support is provided to conversion technolo-

gies by means of stimulating research and development (R&D),

© 2017 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1489–1509
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fast deployment of 1st-of-a-kind plants, support to technologies

to go beyond the valley of death, rapid scale up and so forth.

On the other hand, HighTech assumes that these conditions are

met through coordinated action of business, industry and gov-

ernments.

To avoid supply of all demand in the transport sector by a

single technology, we apply market constraints on second-gen-

eration technologies based on de Wit et al. (2010). Individual

technologies can supply up to 10% of demand in 2030.

Biomass cost-supply (LowBio, HighBio). Low-cost biomass:

The extra-EU and intra-EU cost-supply of biomass in baseline

and reference scenarios are conservative for two reasons.

Firstly, the price of extra-EU wood pellets is based on mill-gate

costs of around 6 € GJ�1. However, studies indicate that these

can be as low as 3.9 € GJ�1 (Uslu et al., 2008) or 2.3–3.1 € GJ�1

by 2030 (Batidzirai et al., 2014) when low-cost biomass is used

for pellets. These could be achieved, for example, using surplus

or abandoned agricultural land for energy crops and intensifi-

cation of agricultural productivity (de Wit & Faaij, 2009; Wicke,

2011). Secondly, the cost-price of intra-EU biomass delivered to

the Netherlands, as assumed in this study, is conservative

because transport costs are estimated based on wood chip

logistics (section ‘Energy supply’). The cost-competitiveness

of biomass chains can improve if efforts focus on biomass

densification to reduce transport and handling costs (e.g. tor-

refaction and pelletization). Such efforts are assumed to take

place in the LowBio scenario resulting to lower upstream cost-

supply of solid biomass. The approach we used to estimate

low-cost biomass supply curves for extra-EU and intra-EU bio-

mass resources is presented in detail in S1.2 in Appendix S1.

High-cost biomass. As a consequence of worldwide

increase in biomass demand, it is expected that global biomass

trade will continue in the future, thereby allowing cost-efficient

distribution of biomass from supply to demand regions. How-

ever, it is uncertain how trade and markets will develop. If the

EU is the only region that supports bioeconomy developments,

then EU demand regions like the Netherlands will have access

only to intra-EU resources. The HighBio scenario assumes that

extra-EU import of biomass is not possible, which decreases

the total potential by 450 PJ compared to the reference. This

effectively leads to increased costs of solid biomass as a large

potential below 7.5 € GJ�1 for solid biomass becomes unavail-

able.

The cost-supply curves of solid biomass used across the dif-

ferent scenarios are presented in Fig. 1. The cost-supply curves

exclude energy maize, solid waste, fuelwood, landscape wood

and road-side grasses, as unlike the solid biomass feedstocks

included in Fig. 1, they are linked with specific end-use

Table 1 Overview of the scenarios assessed in this study. Baseline scenarios assume CO2 tax up to 2020. All other variants assume

CO2 tax up to 2030

Scenario variable: biomass cost-supply

Low-cost

biomass

Reference-cost

biomass

High-cost

biomass

Baseline (no CO2

tax beyond 2020)

High technology

development

n.a.* HighTechBase n.a.* Reference

fossil

fuel price

Baseline (no CO2

tax beyond 2020)

Low technology

development

n.a.* LowTechBase n.a.* Reference

fossil

fuel price

Scenario variable:

technology

development

High technology

development

(HighTech)

n.a.* HighTech(RefBio_

HighFos)

n.a.* High fossil

fuel price

Scenario variable:

fossil fuel price

HighTech

(LowBio_RefFos)

HighTechRef†,‡ HighTech(HighBio_

RefFos)

Reference

fossil fuel

price

n.a.* HighTech(RefBio_

LowFos)†

n.a.* Low fossil

fuel price

Low technology

development

(LowTech)

n.a.* LowTech(RefBio_

HighFos)

n.a.* High fossil

fuel price

LowTech

(LowBio_RefFos)

LowTechRef†,‡ LowTech(HighBio_

RefFos)

Reference

fossil fuel

price

n.a.* LowTech(RefBio_

LowFos)†

n.a.* Low fossil

fuel price

*Combination of scenarios is not assessed in the present study.

†Scenario variables used to assess the sensitivity of the biochemical sector in low chemical demand and delayed decommissioning of

steam crackers.

‡Scenario variables used to assess the impact of complete closure of coal-fired power plants on CO2 emissions.
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applications (e.g. energy maize with codigestion, solid waste

with energy incineration and energy recovery and so forth).

Fossil fuel prices (LowFos, HighFos). Fossil fuel prices are

uncertain, are subjected to change over time (OECD/IEA, 2015)

and are key determining, but uncontrolled factor of the success

or failure of bioeconomy development strategies and other

RES. To capture the uncertainty that such variables may have

on emission mitigation, we deploy the following scenarios:

• LowFos: To obtain insights into the magnitude of biomass

and other RES development in an unfavourable environ-

ment, we use fossil fuel prices reported in IEA-WEO 2015

Low oil price scenario (OECD/IEA, 2015). Compared to the

New Policies Scenario, these prices are lower approximately

35% for oil, 20% for natural gas and 6% for coal compared

to the reference fossil fuel prices.

• HighFos: To obtain insights into the magnitude of biomass

and other RES deployment under favourable conditions, a

50% higher fossil fuel prices is assumed compared to those

of the New Policies Scenario reported at IEA-WEO 2015

(OECD/IEA, 2015).

The variation of fossil fuel prices is presented in Fig. 2.

Other sensitivity scenarios

Several drivers, such as contraction of the economy or competi-

tion from other regions (Broeren et al., 2014), may saturate or

even decrease the production demand for chemicals assumed

for the Netherlands over time. Future reduction in the demand

for chemicals in combination with no decommissioning of

existing steam cracking capacity in the Netherlands is assessed

as an additional sensitivity scenario. A 10% reduction in

demand for chemicals in 2030 compared to 2010 is assumed

based on the reduction in the size of the Dutch petrochemical

industry according to van Meijl et al. (2016).

Furthermore, in the EU, several governments consider

reducing support on, divesting in or even dismantling coal-

fired power plants as this may compromise the diffusion of

other RES and CO2 emission reduction goals (Nicola & Andre-

sen, 2015; Yeo, 2015; Pieters, 2016; Sterl et al., 2016). We assess

this possible future in a scenario, which assumes that electricity

from coal cannot be produced in the Dutch energy system after

2020.

Other studies show that the role of biomass in the energy

system varies, depending on the electricity mix. With exoge-

nously determined electricity supply from other RES ranging

between 17% and 80% and strong climate policy, biomass use

for power generation in Europe ranges between 2.5% and 33%

(0.4–2.1 EJ) of total fuel use in 2050 (Brouwer et al., 2016), with-

out, however, taking competition by other sectors into account.

Furthermore, improvements on energy efficiency could reduce

heat demand in the industry and residential sector. This sug-

gests that a large number of additional scenarios can be defined

to investigate the sensitivity of the system and competition for

biomass, which, however are excluded from this study.

Indicators and overview of the modelling framework

For each scenario in Table 1 we assess the following:

• the final production output from RES per sector in 2030.

For the energy sectors (electricity, heat, fuels), production

output is expressed in final energy terms, while for the

chemical sector it is estimated based on the lower heating

value of biochemicals;

• the contribution of renewable energy on the total final

energy produced by each sector;

• the renewable energy share (i.e. excluding the nonenergy

use of the chemical sector);

• biomass demand that reflects total biomass consumption in

primary energy terms, same as in Tsiropoulos (2016);

Fig. 1 Solid biomass cost-supply curves in the different scenarios of this study in 2030.
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• the direct CO2 emissions in the Netherlands related to the

supply of energy services in all sectors and process emis-

sions by industrial activities. Direct CO2 emissions are those

emitted in the Netherlands; they exclude emissions from

production or extraction and transport of resources (bio-

mass, fossil) to the Netherlands, consistent with IPCC

(2006);

• total annual system costs in 2030, compared to HighTech-

Base.

Figure 3 presents an overview of the framework used in this

study.

Results

Final production from biomass and other RES, and their

contribution to each sector are shown for the reference

scenario in combination with the two technology devel-

opment variants by bars (HighTechRef, LowTechRef),

while the range of outcomes based on the biomass cost-

supply and fossil fuel price scenarios is indicated with

whiskers (Fig. 4). Outcomes for the baseline situation in

combination with the technology development scenarios

are presented with markers (HighTechBase, LowTech-

Base). Results are presented for 2030.

For the indicators renewable energy share (Fig. 5),

biomass consumption (Fig. 6) and CO2 emissions

(Fig. 7), we present the influence of technology develop-

ment in reference conditions (i.e. CO2 tax) in compar-

ison with the baseline for the period 2010–2030. As the

results for the two technology development variants do

not differ significantly in 2020, we only show the 2010–
2030 trajectory of the HighTech scenario for the biomass

cost-supply and the fossil fuel price variants. For com-

parison, we include results for the LowTech scenario in

2030. Apart from the range due to the variation of sce-

nario parameters, results also include the consumption

under baseline and reference conditions. For all scenar-

ios, the difference of their total annual system costs

from HighTechBase is plotted against the corresponding

difference in total direct CO2 emission reduction in

2030. Results with sector-specific assumptions are pre-

sented in section ‘Other scenarios’ (Figs 10 and 11).

All results per scenario and sector are presented in

Tables S10–S12.

Renewable energy

Final production from renewable resources was esti-

mated to be between 460 and 510 PJ in 2030 and does

not differ significantly between HighTechRef and LowTe-

chRef (Fig. 4a), thereby indicating that under reference

assumptions on CO2 tax, biomass cost-supply and fossil

fuel price, technology development is not the only dri-

ver for cost-efficient supply of bioenergy and other

renewable energy. Other drivers include cost-supply of

biomass and fossil fuel prices as indicated by the whis-

kers in Fig. 4 (range 230–745 PJ). The renewable energy

output (Fig. 4b) corresponds to a 23–24% share on final

energy consumption excluding chemicals or to a 18–
20% share on final energy consumption including chem-

icals. More than two-thirds (73–79%) of renewable

energy output is attributed to biomass (Fig. 4a, b),

which is higher than the anticipated contribution of bio-

mass in the energy system based on the EU RED targets

for 2020 (Rijksoverheid, 2010; Stralen et al., 2013). This is

primarily due to the ambitious climate policy assumed

in this study beyond 2020 (by means of high CO2 tax).

In addition, as in this study the CO2 tax also applies to

Fig. 2 Fossil fuel price in the reference scenarios and their fossil fuel price variants.
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emissions by transport, it results to high biofuel output

especially in HighTechRef. The remainder mainly repre-

sents renewable electricity by other renewable resources

(wind and solar).

At a sector level and in absolute terms, technology

development scenarios affect the supply of industrial

biomass heat, biofuels and biochemicals (bars in

Fig. 4a). These are also found to be the sectors with the

largest bio-based output. Under LowTech assumptions, it

is more cost-effective to supply solid biomass in indus-

trial biomass boilers and produce heat as biofuel pro-

duction technologies for road transport and RJF are not

cost-competitive. Under HighTech, the reverse occurs as

biomass conversion technologies to biofuels for road

transport and aviation become cost-competitive. The

trade-off between biomass heat and biofuel output is

also observed in Tsiropoulos (2016) when using differ-

ent policy assumptions beyond 2020. Electricity from

biomass remains small (20–50 PJ; primarily from biore-

fineries, cofiring and municipal solid waste incinera-

tion), as wind becomes the key supplier of renewable

electricity.

Biochemicals are produced even under HighTechBase

and LowTechBase as a result of the retirement of steam-

cracker capacity (20–50 PJ; 5–10% of the sector’s output

Fig. 4). While the CO2 tax only affects the process emis-

sions of the chemical sector, Fig. 4 shows that in HighTe-

chRef the output of biochemicals almost doubles (about

100 PJ; 17%) compared to LowTechRef. This is a result of

multi-output technologies that produce both chemicals

and road transport fuels, with the latter being affected

by the CO2 tax.

The electricity sector is most sensitive to assuming

high fossil fuel prices, which lead up to a factor 2.5

increase in electricity from other RES (primarily wind

power) compared to reference scenarios. Regarding

other scenario variants (e.g. low fossil fuel prices), elec-

tricity from other RES is not affected, as most of the

wind capacity is installed by 2020 to confirm with

Dutch EU RED targets.

Regarding electricity from biomass, at a sector level

scenario variants, namely biomass cost-supply and fos-

sil fuel prices, do not have significant influence, as

ranges are found to be comparable with those of tech-

nology development scenarios (whiskers in Fig. 4a).

Brouwer et al. (2016) suggest that low biomass prices

could place electricity generation from biomass earlier

in the merit order than electricity from natural gas;

biomass could have a larger role in the electricity sector.

Similarly, other assumptions, such as higher CO2 emis-

sion taxes, or higher targets of RES for low-carbon

power systems could lead to different outcomes regard-

ing other RES (Brouwer et al., 2016).

While in absolute terms, final energy supply from

biomass per sector is comparable across all scenario

variants (Fig. 4a), in relative terms, its contribution to

the sector’s final energy varies (Fig. 4b). Most notable is

the contribution of biofuels to road transport fuels,

which goes beyond 60% under HighTech(RefBio_High-

Fos). This occurs due to the increased biofuel supply

(20% higher than in HighTechRef) and due to reduced

fuel demand by the sector (roughly 1/3 or 130 PJ

decrease compared to HighTechRef) as more efficient

vehicles are deployed. These are primarily wheel motor

hybrid vehicles with 76% higher efficiency compared to

regular petrol cars found in reference scenarios (i.e. 927

compared to 526 km driven GJ�1; van Vliet et al., 2011).

While electrification of transport is included in the

Fig. 3 Modelling framework used in the present study.
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technology portfolio, model outcomes show that for the

energy system of the Netherlands by 2030, biofuel sup-

ply in HighTech scenarios and efficient hybrid vehicles

(in HighTech(RefBio_HighFos)) is a more cost-effective

option, partly owing to high costs of electric vehicles.

This suggests that to increase electrification in transport,

other support instruments are required (e.g. subsidies

or tax exemptions).

The market constraint on individual second-genera-

tion biofuel technologies (section ‘Rate of technology

development and technology diffusion’) limits the

production output of FT-fuels in HighTechRef and

HighTech(LowBio_RefFos). In HighTech(RefBio_HighFos),

it limits second-generation ethanol production due to

the deployment of hybrid petrol engines for which

ethanol is the substitute. Across scenarios, the share

of first-generation biofuels over the total transport

fuel supply is 1–13% (5–66 PJ) and 1–12% (5–55 PJ)

in LowTech and HighTech scenario variants, respec-

tively. In LowTech scenarios, all biofuels are supplied

to road transport. In HighTech scenarios, 4–8 PJ of

hydrotreated used cooking oil is supplied to aviation,

Fig. 4 (a) Final renewable energy and nonenergy supply renewable resources in the energy system and per sector and (b) contribu-

tion of renewable energy and nonenergy in the energy system and per sector (remainder is fossil fuels) in the Netherlands in 2030.

Bars indicate ranges of reference scenarios, whiskers indicate range of biomass cost-supply and fossil fuel price scenarios (see scenario

descriptions in Table 1).
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Fig. 5 Renewable energy share on final energy and biomass contribution in the Netherlands in 2010–2030 under high technology

development compared to low technology development in 2030 for (a) technology development (b) biomass cost-supply and (c) fossil

fuel price scenarios. In the Low tech variant, grey markers indicate the baseline and green markers the reference result (see scenario

descriptions in Table 1).
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while the remainder of first-generation biofuels are

supplied to road transport. The share of second-gen-

eration biofuels over the total transport fuel demand

is 0–3% (0–15 PJ) and 10–29% (60–136 PJ) in LowTech

and HighTech scenario variants, respectively. In High-

Tech variants, 6–8 PJ of FT-RJF are supplied to avia-

tion, while the remainder of second-generation

biofuels are supplied to road transport.

In HighTech scenarios, while the output of RJF (7–
14 PJ) and biochemicals (22–100 PJ) to total final energy

supply is relatively small, their contribution to their sec-

tors is up to 7% and 17%, respectively. This is quite sig-

nificant considering that today’s output is limited and

that within a 15-year timeframe, such developments can

obtain a large market share.

Figure 5 shows the renewable energy share and the

contribution of biomass in more detail. Biomass con-

tributes more than two-thirds to the share of renew-

able energy in reference scenarios (Fig. 5a) and

biomass cost-supply scenarios (Fig. 5b). Access to low-

cost biomass increases the renewable energy share

and the contribution of biomass by approximately

17% but only under HighTech(LowBio_RefFos). Under

limited access to low-cost biomass, the contribution of

renewable energy in 2030 is maintained similar to

2020 levels, that is 14% share from RES, where bio-

mass supplies approximately 50% of renewable

energy. Under LowTech(LowBio_RefFos) access to low-

cost biomass does not increase the RES share or its

contribution. Restricted access to low-cost supply cou-

pled with low technology development can pose barri-

ers to cost-efficient deployment of biomass in the

Netherlands.

Fossil fuel price variation leads to wider ranges

(Fig. 5c). First and foremost, under high fossil fuel

prices the renewable energy share almost doubles com-

pared to reference scenarios; biomass contribution does

not follow the same relative growth due to the increase

in electricity from wind turbines in the energy system.

Under HighTech(RefBio_LowFos) and LowTech(RefBio_-

LowFos), RES and biomass contribution remain in 2020

levels for, similar to HighTech(LowBio_RefFos) and Low-

Tech(LowBio_RefFos).

Biomass consumption

Early in the time horizon (2020), biomass consump-

tion driven by technology development is relatively

small, at approximately 200 PJ in both technology

development scenarios and is comparable to baseline

projections. Nevertheless a factor 2 growth is

observed compared to 2010. By 2030, due to the CO2

tax, biomass consumption is 330–460 PJ higher than

the baseline (Fig. 6a).

Access to low-cost biomass shows that additional 100

PJ are used in the energy system (Fig. 6b), however,

only under HighTech(LowBio_RefFos). Total biomass con-

sumption exceeds 700 PJ, which as seen in Fig. 5b also

increases by roughly 4% the contribution of RES and

biomass to the energy system. On the other hand, high

biomass costs can reduce consumption levels signifi-

cantly (to slightly above 300 PJ) even HighTech(High-

Bio_RefFos). The range found between LowTech

(HighBio_RefFos) and LowTech(LowBio_RefFos) by 2030 is

significantly smaller than the one found between High-

Tech(HighBio_RefFos) and HighTech(LowBio_RefFos), that

is 240 PJ compared to 400 PJ. HighTech leads to growth

in biomass consumption but LowTech leads to fairly con-

stant consumption levels between 2020 and 2030. The

above indicates that LowTech could impede long-term

bioeconomy growth as indicated by biomass consump-

tion.

Biomass consumption is also highly sensitive to the

assumed level of fossil fuel prices to 2030 (Fig. 6c; refer-

ence fossil fuel prices: oil 13.4 € GJ�1, natural gas

7.3 € GJ�1, coal 3.1 € GJ�1 in 2030, see Fig. 2). For Low-

Tech and HighTech scenarios, biomass consumption is

more sensitive to low than high fossil fuel price

assumptions. A 50% increase in fossil fuel prices leads

to approximately 25% increase in biomass consumption

in HighTech(RefBio_HighFos) and LowTech(RefBio_High-

Fos) compared to HighTechRef and LowTechRef, respec-

tively (indicated in Fig. 6c by the area above the dotted

line and the upper marker in high and low technology

development, respectively). Low fossil fuel prices lead

to 50–60% reduction of biomass consumption found in

reference scenarios. HighTech(RefBio_HighFos) and High-

Tech(RefBio_LowFos) lead to similar consumption levels

with HighTech(LowBio_RefFos) and HighTech(HighBio_R-

efFos), respectively (Fig. 6b, c). Therefore, even under

unfavourable conditions induced by low fossil fuel

prices, high technology development scenarios demon-

strate small but stable growth in biomass consumption.

On the contrary, LowTech(RefBio_HighFos) consumes

maximum 560 PJ under most favourable conditions

induced by high fossil fuel prices, which are compara-

ble to HighTechRef (the upper range of the bar is compa-

rable to the upper range of the dotted line in Fig. 6c).

CO2 emissions

In Fig. 7a, it is shown that the CO2 tax leads to emission

reduction compared against projected baseline emis-

sions in the range of 35–43% for LowTechRef and HighTe-

chRef, respectively. Compared to LowTechRef, the

additional emission reduction in HighTechRef is 15 Mt

CO2. The decreasing trend in emissions is steeper

beyond 2020 as a result of higher CO2 tax levels and
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Fig. 6 Biomass consumption in the Dutch bioeconomy in 2010–2030 under high technology development compared to low technol-

ogy development in 2030 for (a) technology development (b) biomass cost-supply and (c) fossil fuel price scenarios (see scenario

descriptions in Table 1). In the Low tech variant, grey markers indicate the baseline and green markers the reference result.
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additional technological options. Nevertheless, even

under HighTechRef additional 20 Mt CO2 emission

reduction is required to reach the 40% emission reduc-

tion target compared to 1990. HighTech(LowBio_RefFos)

leads to additional 5 Mt CO2 reduction, partly bridg-

ing the gap with the target (Fig. 7b). As LowTech(Low-

Bio_RefFos) does not utilize additional low-cost

biomass compared to LowTechRef (Fig. 6b), no addi-

tional emission reduction is achieved (Fig. 7b). High-

Tech(HighBio_RefFos) leads to emission reduction levels

comparable with those achieved in LowTechRef (i.e.

approximately 35% compared to the baseline or direct

CO2 emissions in the range of 120 Mt CO2). Similar

reduction is observed in HighTech(RefBio_LowFos)

(Fig. 7c). However, under such circumstances, the dis-

tance to the 40% emission reduction target is 30% (or

40 Mt CO2). To remain in cost-efficient emission

reduction trajectories, HighTech seems to be a no-regret

solution even under unfavourable conditions shaped

by high-cost biomass or low fossil fuel prices as they

offer significant potential for deeper emission reduc-

tion. More specifically, results indicate that under

HighTech(RefBio_HighFos), the 40% emission reduction

target is reached. In LowTech(RefBio_HighFos), however,

CO2 mitigation is 12 Mt CO2 behind the target

(Fig. 7c). Note that these emissions exclude those that

occur outside the geographical boundaries of the

Netherlands from production and transport of bio-

mass, land-use change, extraction and transport of fos-

sil fuels and jet fuels (section ‘Indicators and overview

of the modelling framework’).

Figure 8 shows the amount of carbon captured and

stored by CCS and BECCS across the different scenarios

(19–41 Mt CO2). The contribution of CCS and BECCS in

emission reduction is significant (42–60% compared to

the baseline). The remainder of emission reduction is

primarily achieved through biomass (20–40 Mt CO2), as

with the exception of high fossil fuel price scenarios, the

capacity of wind and other RES does not increase signif-

icantly compared to the baseline.

Carbon capture and storage is stimulated by the high

CO2 tax while in baseline scenarios, no CCS is

deployed. The key difference across HighTechRef and

LowTechRef is the deployment of BECCS in gasification

technologies that supply FT-fuels to the transport sector.

These technologies are assumed not to be available in

LowTech scenarios. Carbon capture by the power sector

is primarily associated with retrofitted coal-based power

plants. It represents more than 65% of the emissions

captured and stored by the sector. The remainder is

associated with gas-based capacity and is similar across

the technology development scenarios. In HighTech sce-

narios, BECCS represent 16–50% of the emissions cap-

tured and stored.

In scenarios that assume high fossil fuel prices, CCS

in LowTech(RefBio_HighFos) and in addition BECCS in

HighTech(RefBio_HighFos) represent 10–20% of the emis-

sion reduction achieved compared to the baseline (10–
20 Mt CO2 is stored). In these scenarios, significant

emission reduction is achieved through other RES, as

the output of wind electricity increases by approxi-

mately a factor 3, compared to the baseline (emission

reduction from bioenergy and other RES is 70–75 Mt

CO2). In addition, less coal capacity is projected to be

used. Due to the decrease in demand for transport fuels

by deployment of efficient vehicles the transport sector

also contributes to emission reduction.

System costs

We compare total annual system costs and total direct

CO2 emissions in 2030 between all scenario variants and

HighTechBase (Fig. 9). Total system costs in most scenar-

ios increase from 0.6 to 13.1 billion € yr�1 compared to

HighTechBase. An exception are LowTech(RefBio_LowFos)

and HighTech(RefBio_LowFos) that show lower costs of

about 6.5 billion € yr�1. Annual system costs are most

sensitive to fossil fuel price variation. A 35% decline in

oil prices (section ‘Fossil fuel prices’; Fig. 2) reduces

annual system costs by about 9% and a 50% increase in

oil prices increases annual system costs by approxi-

mately 18–19% in 2030, compared to HighTechBase

(Table S12). HighTech scenarios consistently show lower

system costs and CO2 emissions in 2030 and cumulative

system costs and CO2 emissions over the period 2010–
2030 (Table S11) when compared to their LowTech

scenario counterparts. This illustrates that HighTech is a

no-regrets solution also when costs are taken into

account. Note that total system costs do not include tech-

nology development costs (e.g. R&D, 1st-of-a-kind plant,

production at low capacity factors or high downtime)

nor investment and dismantling lead-times and costs.

As technology development occurs in larger regions and

cannot be allocated to the Netherlands, these costs are

excluded from both LowTech and HighTech scenarios and

are not expected to affect the relative conclusions drawn

in this study. Including such costs requires a modelling

framework with a wider regional scope. In absolute

terms, however, should investment and dismantling

costs be included they would increase total system costs.

Other scenarios

Low demand for chemicals. Figure 10 shows a decline in

demand for chemicals over time, which in combination

with delayed decommissioning of old steam cracking

capacity in the Netherlands beyond 2030 affects the pro-

duction output of biochemicals. This is noticed early in

© 2017 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1489–1509

ADVANCED BIOENERGY IN THE ENERGY SYSTEM 1501



Fig. 7 CO2 emissions in the Netherlands in 2010–2030 under high technology development compared to low technology develop-

ment in 2030 for (a) technology development (b) biomass cost-supply and (c) fossil fuel price scenarios (see scenario descriptions in

Table 1). In the Low tech variant, grey markers indicate the baseline and green markers the reference result.
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the time horizon (2020), when under LowTech assump-

tions, no production of biochemicals takes place, and

under HighTech assumptions, the production output is

reduced by 75% compared to HighTechRef. The differ-

ence in production output between scenarios becomes

smaller by 2030, and lower demand for petrochemicals

leads to a 16–37% reduction of output in LowTech and

HighTech compared to their reference. However, assum-

ing low fossil fuel prices creates an uncompetitive envi-

ronment for biochemicals throughout the modelling

period. This may be also an outcome of the limited

number biochemicals that are assumed in this study

combined with the fact that the CO2 tax does not affect

nonenergy use (i.e. biochemicals do not receive any

credit for their bio-based carbon content). As Fig. 11

shows, assuming lower demand for chemicals does not

affect the direct CO2 emissions of the Dutch energy sys-

tem. Compared to their reference scenarios, the low

chemical demand scenarios lead to 4–5% lower CO2

emissions, primarily due to less process energy emis-

sions (electricity, heat) as a result of decrease in indus-

trial demand for energy.

Fig. 8 Carbon captured and stored across different scenario variants in the Netherlands in 2030.

Fig. 9 Difference of total annual system costs and total direct emissions in 2030 between HighTechBase and the other scenario

variants.
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Decommissioning of coal-based power capacity. The results

show that decommissioning coal-fired power stations in

the Netherlands after 2020 increases wind electricity by

55–75% (48–65 PJ; offshore wind turbine capacity

increase of 5.2 GWe and 3.9 GWe in low and high tech-

nology development, respectively, compared to LowTe-

chRef and HighTechRef, respectively) and 13–18%
(30–39 PJ) in natural gas-based electricity. By 2030,

offshore wind turbines are expected to become more

cost-efficient than other electricity production options

leading to higher renewable energy share and contribu-

tion in the electricity sector. Deployment of onshore

wind reaches constraint levels (8 GWe) across all scenar-

ios with high CO2 tax by 2030. Despite the significant

deployment of wind power, direct CO2 emissions

remain at levels comparable with LowTechRef and High-

TechRef because CCS combined with coal power plants

is no longer an available mitigation option (Table S12).

Overall the total carbon removed and stored by CCS is

lower by 15 Mt CO2 and 12.5 Mt compared to LowTe-

chRef and HighTechRef, respectively. Decommissioning

coal power plants leads to additional system costs of

6.7–9 M€ yr�1 from 2020 onward and increases CO2

mitigation costs by 12% and 14% in HighTechRef and

LowTechRef, respectively (Tables S12 and S13).

Discussion

This study compared multiple scenario outcomes of an

energy systems model to gain insights in CO2 emission

reduction that can be achieved by renewable energy,

CCS and BECCS deployment in the energy system

when driven by cost competition with fossil fuel alter-

natives. We used the MARKAL-NL-UU model, which

includes a representation of modern and emerging bio-

mass conversion technologies, other renewable and fos-

sil fuel conversion technologies. We did not incorporate

any policy assumptions beyond 2020 to allow for free

competition between all options. Using CO2 tax as the

only instrument for emission reduction, we assessed the

achievement of or the distance to the EU’s 40% emission

target in 2030 compared to 1990.

We incorporated different biomass cost-supply

curves to assess how deployment of biomass conver-

sion technologies at a sectoral level and emission

reduction at a systems level can be affected. We also

assessed how dependent the national bioeconomy and

the renewable energy system is on fossil fuel price

variation. By combining biomass cost-supply and fos-

sil fuel price scenarios with different assumptions on

technology development, which vary in learning pro-

gress and technical parameters of technologies, we

captured key uncertainties of mid-term bioeconomy

development.

There are important considerations that should be

taken when interpreting the outcomes.

Firstly, we used CO2 emission pricing as the instru-

ment to stimulate emission reduction as opposed to

applying a cap on national emissions. In most scenarios,

the 40% emission reduction target is not reached albeit

significant reduction is realized (46–97 Mt CO2 across

scenarios compared to baseline; Fig. 7). The CO2 price

assumptions of IEA-WEO 2015 reflect the EU and not

the required level for an individual country such as the

Fig. 10 Biochemical output in reference and low fossil fuel price scenarios assuming different growth rates for the chemical industry

in the Netherlands in 2020–2030.
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Netherlands to achieve the target. Evidently, a higher

CO2 price would be required for the Netherlands. In

addition, the assumed CO2 price is an outcome of simu-

lation where other policy measures and technologies

such as energy efficiency are taken into account. Such

measures are not included in our model. It could be

argued that the assumed CO2 price would be adequate

to achieve the target in all scenarios had low-cost effi-

ciency measures such as insulation of buildings been

included. Then, the abatement achieved by biomass,

other RES, CCS and BECCS could be lower. Related to

the above, is that the CO2 tax is assigned on sectoral

emissions and not on the fossil carbon they consume.

This is relevant for the chemical sector, which consumes

large volumes of fossil carbon as feedstock that remains

embedded in the products. Applying the tax on fossil

carbon consumption similar to other studies (Daioglou

et al. (2014)) could lead to different system dynamics

because the benefit of avoiding CO2 emissions from

waste management would be taken into account. How-

ever, for a national model, this entails an improved rep-

resentation of the end-of-life phase of products, where

cascading uses and exports of chemicals are taken into

account (Tsiropoulos 2016). This study finds that signifi-

cant volumes of biochemicals could potentially be pro-

duced by 2030 (5–20% of total chemical output in final

energy terms; Fig. 4b), even under baseline assumptions

(5–10% of total chemical output in final energy terms;

Fig. 4b). This entails that there may be a high potential

for cascading uses of biomass from higher to lower

value applications (Keegan et al., 2013). While this is not

modelled in the study, it is important to point out that

cascading uses would lead to increase in efficient

biomass use in the energy system and possibly to an

increased output of biomass heat and electricity. Note

that, based on Dammer et al. (2013), the production

capacity of biochemicals in the Netherlands is com-

prised primarily of starch-blends and functional poly-

mers (approximately 0.13 Mt). These applications are

excluded from our study as we focus on large-scale pro-

duction of biochemicals with significant potential for

the substitution of fossil energy in the chemical indus-

try. A combination of factors such as delayed retirement

of steam cracking capacity, low fossil fuel price environ-

ment and decline in demand have an impact on the

competitiveness of biochemicals as the output becomes

negligible. Regarding the aviation sector, it was found

that RJF may be supplied only under high technology

development assumptions.

Furthermore, the outcomes represent only domestic

emissions that occur in the Netherlands. The emissions

related to production and transport of fossil fuels and

biomass outside the Netherlands are not included. Con-

sequently, neither are emissions from direct and indirect

land-use change. Emissions from indirect land-use

change are rather uncertain (Wicke et al., 2012). How-

ever, the present study demonstrates that large volumes

of biomass may be consumed in the Netherlands in the

mid-term and direct as well as indirect land-use change

emissions may influence global CO2 emission reduction

efforts. In Tsiropoulos (2016), we showed that emissions

from production and import of biomass from regions

outside the Netherlands were approximately 4 Mt CO2,

which are 4–9% compared to the emission reduction

achieved across scenarios from the baseline of this

study. These emissions do not affect the main

Fig. 11 Direct CO2 emissions in reference and low fossil fuel price scenarios assuming different growth rates for the chemical indus-

try in the Netherlands in 2020–2030.
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conclusions drawn in this study, as they do not affect

domestic emissions and distance to target. However,

they are relevant when emissions at a larger geographi-

cal scope are assessed. Finally, non-CO2 emissions (e.g.

methane, nitrous oxides), from agriculture, industry and

waste processing, while not related to the energy system

that is assessed in the present study, accounted for

about 16% (or 30 MtCO2eq.) of national total GHG emis-

sions in 2014 (Table S9). It is estimated that over time it

is technically feasible and cost-effective for these sectors

to achieve approximately 50% emission reduction

(Roelofsen et al., 2016).

While the above are important to consider, this study

shows results that are well-aligned with other efforts.

A study that assessed lowest-cost complementarity of

integrating fossil-based capacity with predetermined

RES diffusion to achieve low-carbon power systems

illustrates the significance of wind turbines and CCS to

achieve emission reduction (Brouwer et al., 2016). While

there are key differences in scope (geographical, tempo-

ral) and modelling techniques between the present

study and Brouwer et al. (2016), they both show that

lowest system costs are achieved with a mix of RES and

CCS in the power sector. Similar outcomes are sup-

ported by van den Broek et al. (2011) in scenarios which

take ambitious climate policies into account. A key dif-

ference between the outcomes of these studies com-

pared to the results presented here is the deployment of

CCS in gas-fired instead of coal-fired plants. An expla-

nation to this can be the recent instalment of coal-based

capacity in the Netherlands, which remains operational

until 2030. An additional explanation could be that in

the present study, more sectors are included in the

energy system. As van Vliet et al. (2011) showed, when

accounting for the transport sector in the energy system.

the role of BECCS in biomass-based FT-fuel production

is prominent. This finding, as confirmed by the present

study, is also relevant when emerging bioeconomy sec-

tors (i.e. biochemicals and RJF) are included in the

energy system. Therefore, the significance of BECCS is

demonstrated not only as a longer-term emission miti-

gation option, which many studies support (Fischedick

et al., 2011; Fuss et al., 2014), but also in earlier in the

time horizon, provided that the technology can be com-

mercialized within the assumed timeframe.

Regarding biochemicals, to our knowledge there are

limited studies that provide future estimates at a sys-

tems level, as for example Daioglou et al. (2014).

According to their study, in the long term biomass has

the potential to supply up to 40% of total demand for

nonenergy in 2100 (or about 1 Gt yr�1 assuming

45 GJ t�1 as heating value; Daioglou et al., 2014). Other

studies have also performed short-term assessments of

future biochemical potential (Dornburg et al., 2008; Ren

& Patel, 2009; Ren et al., 2009; nova-Institut, 2013; Say-

gin et al., 2013, 2014; Gerssen-Gondelach et al., 2014; Pio-

trowski et al., 2015) without, however, taking systems

dynamics into account. European Bioplastics estimate

that global production capacity of bioplastics will reach

7.85 Mt in 2019 (EuBP, 2016). Our study estimates that

production output of biochemicals may reach up to

1.1 Mt in the Netherlands in 2020 depending on sce-

nario conditions. While results of these studies cannot

be directly comparable with the output of this study,

they all confirm that biochemical increases over time.

Against this background, the most important observa-

tions can be summarized in the following:

The size of bioeconomy depends on developments across
the supply chain and the fossil fuel price

By 2030, the contribution of biomass in renewable

energy supply is higher than the approximately 50%

that is anticipated according to other studies by 2020

(Rijksoverheid, 2010; Stralen et al., 2013). It ranges

between 52% and 77% and corresponds to biomass

consumption volumes of 183–760 PJ, depending on sce-

nario assumptions. Biomass supply depends on intra-

EU and extra-EU biomass, and based on literature, it is

deemed available (Chum et al., 2011; Ganzevles, 2014;

Smeets, 2014). The supply from RES observed in the

decade 2020–2030 is due to technological growth and

increase in the CO2 emission tax. Other RES remain

fairly constant to 2020 levels, while the bioeconomy

grows. Investments across the supply chain both on the

supply side, as modelled by the low-cost biomass sce-

nario, and on the conversion side, as modelled by the

high technology development scenario, lead to

increased contribution of biomass in the system

(Fig. 6a). Low fossil fuel prices do not lead to contrac-

tion of the RES share compared to 2020 and reduce total

system costs by about 6.5 billion € yr�1 in 2030, how-

ever, even under high technology development no

growth is observed. In the face of low fossil fuel prices,

mechanisms are required to ensure bioeconomy growth

such as a CO2 tax higher than 69 € t�1 CO2 by 2030.

A mixed technology portfolio is required to achieve deep
emission reduction

A wide technology portfolio is required to achieve emis-

sion reduction in the mid-term, to realize long-term cli-

mate goals. The role of wind in the electricity sector,

bioenergy in road transport and industrial heat, but also

CCS and BECCS are significant. This finding is widely

supported by literature (IPCC, 2014; Matthews et al.,

2015; Winchester & Reilly, 2015). Introducing new bioe-

conomy sectors in the energy system, namely
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biochemicals and RJF does not alter it; however, the lat-

ter are supplied only under high technology develop-

ment assumptions. As other RES do not increase

significantly in the scenario outcomes, except when high

fossil fuel prices are assumed, the post-2020 emission

reduction can be attributed to biomass (20–40 Mt CO2

or 40–60% compared to the baseline) and CCS (19–
41 Mt CO2 or 42–60% compared to the baseline). In high

technology development scenarios, which among other

options include BECCS, emission reduction is higher by

6–17% (7.5–20 Mt) compared to low technology devel-

opment scenarios (BECCS contributes 47–83%). BECCS

can have a significant role earlier in the time horizon

than most studies indicate (Fischedick et al., 2011; Fuss

et al., 2014), if the technology is commercialized. With

demand-side improvements (e.g. on industrial and resi-

dential energy efficiency), the role of biomass heat may

diminish in the longer term. This could create opportu-

nities for other bioeconomy sectors to grow. Such an

assessment requires incorporation to the model of

energy efficiency measures or a longer temporal scope

(e.g. 2040), which may also result in other structural

changes of sectors such as electrification in transport.

Sector-specific assumptions do not compromise the
potential emission reduction

A decrease in demand for chemicals in combination

with other factors such as delayed retirement of steam

cracking capacity and low fossil fuel prices affects the

size of the biochemical sector. The latter reduce the out-

put of biochemicals by about 70% compared to the ref-

erence, while combined with the former assumptions

the reduction ranges between 85 and 99%. However, the

systems’ CO2 emissions are not affected. Furthermore,

dismantling all coal-based power generation capacity

leads to an increase in RES (wind) and natural-gas

power generation. While coal is effectively phased out

entirely from the energy system of the Netherlands, the

emission levels in 2030 remain the same as CCS capacity

compared to reference scenarios is lower and the emis-

sion reduction is offset by wind turbines.

High technology development is a no-regrets option to
achieve deep emission reduction

Post-2020, high technology development uses 313–
760 PJ of biomass depending on scenario assumptions.

Compared to the low technology development counter-

parts, it offers additional opportunities to utilize bio-

mass in the energy system as indicated by the

additional 100–270 PJ that are consumed. High techno-

logy development combined with the low-cost biomass

scenario uses approximately 100 PJ more compared to

the reference. Assuming low-cost biomass does not lead

to increased consumption in low technological growth

scenarios. Thus, improvements early in the supply chain

increase the size of the bioeconomy only under high

technological growth. Furthermore, high technology

development consistently leads to lower emissions and

cumulative system costs than low technology develop-

ment in 2030. At the same time, high technology devel-

opment creates a more resilient bioeconomy even if

fossil fuel prices remain low as there is continuous

growth to 2030. However, this observation excludes

external costs, which are required to achieve high tech-

nological growth, such as in R&D or support to 1st-of-a-

kind plant. Furthermore, this comparison is sensitive to

the underlying production costs of bioenergy and bio-

chemicals as illustrated by the two technology develop-

ment scenario variants. Nonetheless, to achieve deeper

levels of emission reduction required to embark on low-

cost trajectories that meet long-term climate targets tech-

nological development is required to reduce production

costs of advanced biomass conversion technologies.
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