2,190 research outputs found

    A Recursive Algorithm for Computing Inferences in Imprecise Markov Chains

    Full text link
    We present an algorithm that can efficiently compute a broad class of inferences for discrete-time imprecise Markov chains, a generalised type of Markov chains that allows one to take into account partially specified probabilities and other types of model uncertainty. The class of inferences that we consider contains, as special cases, tight lower and upper bounds on expected hitting times, on hitting probabilities and on expectations of functions that are a sum or product of simpler ones. Our algorithm exploits the specific structure that is inherent in all these inferences: they admit a general recursive decomposition. This allows us to achieve a computational complexity that scales linearly in the number of time points on which the inference depends, instead of the exponential scaling that is typical for a naive approach

    Connecting two theories of imprecise probability

    Get PDF

    Game-theoretic learning using the imprecise Dirichlet model

    Get PDF
    We discuss two approaches for choosing a strategy in a two-player game. We suppose that the game is played a large number of rounds, which allows the players to use observations of past play to guide them in choosing a strategy. Central in these approaches is the way the opponent's next strategy is assessed; both a precise and an imprecise Dirichlet model are used. The observations of the opponent's past strategies can then be used to update the model and obtain new assessments. To some extent, the imprecise probability approach allows us to avoid making arbitrary initial assessments. To be able to choose a strategy, the assessment of the opponent's strategy is combined with rules for selecting an optimal response to it: a so-called best response or a maximin strategy. Together with the updating procedure, this allows us to choose strategies for all the rounds of the game. The resulting playing sequence can then be analysed to investigate if the strategy choices can converge to equilibria

    Exchangeability and sets of desirable gambles

    Get PDF
    Sets of desirable gambles constitute a quite general type of uncertainty model with an interesting geometrical interpretation. We give a general discussion of such models and their rationality criteria. We study exchangeability assessments for them, and prove counterparts of de Finetti's finite and infinite representation theorems. We show that the finite representation in terms of count vectors has a very nice geometrical interpretation, and that the representation in terms of frequency vectors is tied up with multivariate Bernstein (basis) polynomials. We also lay bare the relationships between the representations of updated exchangeable models, and discuss conservative inference (natural extension) under exchangeability and the extension of exchangeable sequences.Comment: 40 page

    On coherent immediate prediction: connecting two theories of imprecise probability

    Get PDF
    We give an overview of two approaches to probabiliity theory where lower and upper probabilities, rather than probabilities, are used: Walley's behavioural theory of imprecise probabilities, and Shafer and Vovk's game-theoretic account of probability. We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence between them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other. Our approach leads to an account of immediate prediction in the framework of Walley's theory, and we prove an interesting and quite general version of the weak law of large numbers

    Updating beliefs with incomplete observations

    Get PDF
    Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete. This is a fundamental problem in general, and of particular interest for Bayesian networks. Recently, Grunwald and Halpern have shown that commonly used updating strategies fail in this case, except under very special assumptions. In this paper we propose a new method for updating probabilities with incomplete observations. Our approach is deliberately conservative: we make no assumptions about the so-called incompleteness mechanism that associates complete with incomplete observations. We model our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of imprecise probabilities, and we use only coherence arguments to turn prior into posterior probabilities. In general, this new approach to updating produces lower and upper posterior probabilities and expectations, as well as partially determinate decisions. This is a logical consequence of the existing ignorance about the incompleteness mechanism. We apply the new approach to the problem of classification of new evidence in probabilistic expert systems, where it leads to a new, so-called conservative updating rule. In the special case of Bayesian networks constructed using expert knowledge, we provide an exact algorithm for classification based on our updating rule, which has linear-time complexity for a class of networks wider than polytrees. This result is then extended to the more general framework of credal networks, where computations are often much harder than with Bayesian nets. Using an example, we show that our rule appears to provide a solid basis for reliable updating with incomplete observations, when no strong assumptions about the incompleteness mechanism are justified.Comment: Replaced with extended versio

    Factorisation properties of the strong product

    Get PDF
    We investigate a number of factorisation conditions in the frame- work of sets of probability measures, or coherent lower previsions, with finite referential spaces. We show that the so-called strong product constitutes one way to combine a number of marginal coherent lower previsions into an independent joint lower prevision, and we prove that under some conditions it is the only independent product that satisfies the factorisation conditions

    Independent natural extension for sets of desirable gambles

    Get PDF
    We investigate how to combine a number of marginal coherent sets of desirable gambles into a joint set using the properties of epistemic irrelevance and independence. We provide formulas for the smallest such joint, called their independent natural extension, and study its main properties. The independent natural extension of maximal sets of gambles allows us to define the strong product of sets of desirable gambles. Finally, we explore an easy way to generalise these results to also apply for the conditional versions of epistemic irrelevance and independence
    corecore