26 research outputs found

    Electronic health records (EHRs) in clinical research and platform trials: Application of the innovative EHR-based methods developed by EU-PEARL

    Get PDF
    Electronic health records; Platform trialsRegistros mĂ©dicos electrĂłnicos; Pruebas de plataformaRegistres mĂšdics electrĂČnics; Proves de plataformaObjective Electronic Health Record (EHR) systems are digital platforms in clinical practice used to collect patients’ clinical information related to their health status and represents a useful storage of real-world data. EHRs have a potential role in research studies, in particular, in platform trials. Platform trials are innovative trial designs including multiple trial arms (conducted simultaneously and/or sequentially) on different treatments under a single master protocol. However, the use of EHRs in research comes with important challenges such as incompleteness of records and the need to translate trial eligibility criteria into interoperable queries. In this paper, we aim to review and to describe our proposed innovative methods to tackle some of the most important challenges identified. This work is part of the Innovative Medicines Initiative (IMI) EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) project’s work package 3 (WP3), whose objective is to deliver tools and guidance for EHR-based protocol feasibility assessment, clinical site selection, and patient pre-screening in platform trials, investing in the building of a data-driven clinical network framework that can execute these complex innovative designs for which feasibility assessments are critically important. Methods ISO standards and relevant references informed a readiness survey, producing 354 criteria with corresponding questions selected and harmonised through a 7-round scoring process (0–1) in stakeholder meetings, with 85% of consensus being the threshold of acceptance for a criterium/question. ATLAS cohort definition and Cohort Diagnostics were mainly used to create the trial feasibility eligibility (I/E) criteria as executable interoperable queries. Results The WP3/EU-PEARL group developed a readiness survey (eSurvey) for an efficient selection of clinical sites with suitable EHRs, consisting of yes-or-no questions, and a set-up of interoperable proxy queries using physicians’ defined trial criteria. Both actions facilitate recruiting trial participants and alignment between study costs/timelines and data-driven recruitment potential. Conclusion The eSurvey will help create an archive of clinical sites with mature EHR systems suitable to participate in clinical trials/platform trials, and the interoperable proxy queries of trial eligibility criteria will help identify the number of potential participants. Ultimately, these tools will contribute to the production of EHR-based protocol design.“EU-PEARL has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 853966-2. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA and CHILDREN'S TUMOR FOUNDATION, GLOBAL ALLIANCE FOR TB DRUG DEVELOPMENT NON PROFIT ORGANISATION, SPRINGWORKS THERAPEUTICS INC.

    Review article: The need for more efficient and patient-oriented drug development pathways in NASH—setting the scene for platform trials

    Get PDF
    Drug development; Non-alcoholic steatohepatitis; Study designsDesenvolupament de fĂ rmacs; Esteatohepatitis no alcohĂČlica; Dissenys d'estudiDesarrollo de fĂĄrmacos; Esteatohepatitis no alcohĂłlica; Diseños de estudioBackground and Aims Non-alcoholic steatohepatitis (NASH) constitutes a significant unmet medical need with a burgeoning field of clinical research and drug development. Platform trials (PT) might help accelerate drug development while lowering overall costs and creating a more patient-centric environment. This review provides a comprehensive and nuanced assessment of the NASH clinical development landscape. Methods Narrative review and expert opinion with insight gained during the EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) project. Results Although NASH represents an opportunity to use adaptive trial designs, including master protocols for PT, there are barriers that might be encountered owing to distinct and sometimes opposing priorities held by these stakeholders and potential ways to overcome them. The following aspects are critical for the feasibility of a future PT in NASH: readiness of the drug pipeline, mainly from large drug companies, while there is not yet an FDA/EMA-approved treatment; the most suitable design (trial Phase and type of population, e.g., Phase 2b for non-cirrhotic NASH patients); the operational requirements such as the scope of the clinical network, the use of concurrent versus non-concurrent control arms, or the re-allocation of participants upon trial adaptations; the methodological appraisal (i.e. Bayesian vs. frequentist approach); patients' needs and patient-centred outcomes; main regulatory considerations and the funding and sustainability scenarios. Conclusions PT represent a promising avenue in NASH but there are a number of conundrums that need addressing. It is likely that before a global NASH PT becomes a reality, ‘proof-of-platform’ at a smaller scale needs to be provided.JMP reports having received consulting fees from Boehringer-Ingelheim, MSD and Novo Nordisk. He has received speaking fees from Gilead, Intercept, and Novo Nordisk, and travel expenses from Gilead, RubiĂł, Pfizer, Astellas, MSD, CUBICIN, and Novo Nordisk. He has received educational and research support from Madrigal, Gilead, Pfizer, Astellas, Accelerate, Novartis, Abbvie, ViiV, and MSD. Funds from European Commission/EFPIA IMI2 853966-2, IMI2 777377, H2020 847989, and ISCIII PI19/01898. NAdP works for Janssen. QMA is Coordinator of the EU IMI-2 LITMUS consortium, which is funded by the EU Horizon 2020 programme and EFPIA. This multistakeholder consortium includes industry partners. He reports research Grant Funding: Allergan/Tobira, AstraZeneca, Boehringer-Ingelheim, Glaxo SmithKline, Glympse Bio, Intercept, Novartis Pharma AG, Pfizer Ltd. Consultancy: 89Bio, Abbvie/Allergan, Akero, Altimentiv, Altimmune, AstraZeneca, Axcella, Blade, BMS, BNN Cardio, Boehringer-Ingelheim, Cirius, CymaBay, EcoR1, E3Bio, Eli Lilly & Company Ltd., Galmed, Genentech, Genfit SA, Gilead, Grunthal, HistoIndex, Indalo, Intercept Pharma Europe Ltd., Inventiva, IQVIA, Janssen, Johnson & Johnson, Madrigal, MedImmune, Medpace, Merck, Metacrine, NGMBio, North Sea Therapeutics, Novartis, Novo Nordisk A/S, PathAI, Pfizer Ltd., Poxel, ProSciento, Raptor Pharma, Roche, Servier, Shionogi, Terns, The Medicines Company, Viking Therapeutics. Speaker: Abbott Laboratories, Allergan/Tobira, BMS, Clinical Care Options, Falk, Fishawack, Genfit SA, Gilead, Integritas Communications, Kenes, Medscape. Royalties: Elsevier Ltd. PM works for Novartis. MSK is an employee of and a shareholder in Novo Nordisk A/S. JG has received consulting fees from Boehringer-Ingelheim, speaking fees from Echosens and travel expenses from Gilead and Abbie. Funds from ISCIII PI18/00947 and PI21/00691. JRE has received speaking fees from Gilead. FT lab’ work has been supported by the German Research Foundation (DFG, CRC/TR 362) and research grants from Gilead, Allergan, Bristol-Myers Squibb and Inventiva. VR consults for and Intercept, Novo Nordisk, Galmed, Poxel, NGM, Madrigal, Enyo, Sagimet, 89 Bio, Prosciento, Terns, and Theratechnologies, and received grants from Intercept and Gilead

    Proteomic Analysis of Dysfunctional Liver Sinusoidal Endothelial Cells Reveals Substantial Differences in Most Common Experimental Models of Chronic Liver Diseases

    Get PDF
    Animal models; Chronic liver disease; Endothelial dysfunctionModels animals; Malaltia hepĂ tica crĂČnica; DisfunciĂł endotelialModelos animales; Enfermedad hepĂĄtica crĂłnica; DisfunciĂłn endotelialMolecular markers of dedifferentiation of dysfunctional liver sinusoidal endothelial cells (LSEC) have not been fully elucidated. We aimed at deciphering the molecular profile of dysfunctional LSEC in different pathological scenarios. Flow cytometry was used to sort CD11b−/CD32b+ and CD11b−/CD32b− LSEC from three rat models of liver disease (bile duct ligation-BDL; inhaled carbon tetrachloride-CCl4; and high fat glucose/fructose diet-HFGFD). A full proteomic profile was performed applying nano-scale liquid chromatography tandem mass spectrometry (nLC-MS) and analyzed with PEAKS software. The percentage of CD32b− LSEC varied across groups, suggesting different capillarization processes. Both CD32+ and CD32b− LSEC from models are different from control LSEC, but differently expressed proteins in CD32b− LSEC are significantly higher. Heatmaps evidenced specific protein expression patterns for each model. Analysis of biological significance comparing dysfunctional CD32b− LSEC with specialized CD32b+ LSEC from controls showed central similarities represented by 45 common down-regulated proteins involved in the suppression of the endocytic machinery and 63 common up-regulated proteins associated with the actin-dependent cytoskeleton reorganization. In summary; substantial differences but also similarities in dysfunctional LSEC from the three most common models of liver disease were found, supporting the idea that LSEC may harbor different protein expression profiles according to the etiology or disease stage.This work was supported by grants PI18/00947 and AC18/00033 (ENM3 2018) and PI21/00691 from Instituto de Salud Carlos III (ISCIII) and cofounded by the European Union (ERDF/ESF, “Investing in your future”). J.G. is the recipient of a clinical intensification award and D.H. of a Sara Borrell grant, both from ISCIII. M.G. and A.B. have predoctoral fellowships from AgĂšncia de GestiĂł d’Ajuts Universitaris i de Recerca (AGAUR) and ISCIII respectively. Centro de InvestigaciĂłn BiomĂ©dica en Red de Enfermedades HepĂĄticas y Digestivas (CIBERehd) is supported by ISCIII. The APC was funded by ISCIII

    Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET)

    Get PDF
    Background and aims Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. Methods Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. Results Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. Conclusions Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF

    Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET)

    Get PDF
    Background and aims: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. Methods: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. Results: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. Conclusions: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF

    Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation

    Get PDF
    BACKGROUND & AIMS: Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation- associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS: We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS: Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%–36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or g-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter 280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-lowdensity lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Zoverexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS: In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosisinfo:eu-repo/semantics/publishedVersio

    Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers

    Get PDF
    Homozygosity for the Pi∗Z variant of the gene that encodes the alpha-1 antitrypsin peptide (AAT), called the Pi∗ZZ genotype, causes a liver and lung disease called alpha-1 antitrypsin deficiency. Heterozygosity (the Pi∗MZ genotype) is a risk factor for cirrhosis in individuals with liver disease. Up to 4% of Europeans have the Pi∗MZ genotype; we compared features of adults with and without Pi∗MZ genotype among persons without preexisting liver disease.info:eu-repo/semantics/publishedVersio

    Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency.

    Get PDF
    OBJECTIVE: Alpha-1 antitrypsin deficiency (AATD) is a common, potentially lethal inborn disorder caused by mutations in alpha-1 antitrypsin (AAT). Homozygosity for the 'Pi*Z' variant of AAT (Pi*ZZ genotype) causes lung and liver disease, whereas heterozygous 'Pi*Z' carriage (Pi*MZ genotype) predisposes to gallstones and liver fibrosis. The clinical significance of the more common 'Pi*S' variant remains largely undefined and no robust data exist on the prevalence of liver tumours in AATD. DESIGN: Baseline phenotypes of AATD individuals and non-carriers were analysed in 482 380 participants in the UK Biobank. 1104 participants of a multinational cohort (586 Pi*ZZ, 239 Pi*SZ, 279 non-carriers) underwent a comprehensive clinical assessment. Associations were adjusted for age, sex, body mass index, diabetes and alcohol consumption. RESULTS: Among UK Biobank participants, Pi*ZZ individuals displayed the highest liver enzyme values, the highest occurrence of liver fibrosis/cirrhosis (adjusted OR (aOR)=21.7 (8.8-53.7)) and primary liver cancer (aOR=44.5 (10.8-183.6)). Subjects with Pi*MZ genotype had slightly elevated liver enzymes and moderately increased odds for liver fibrosis/cirrhosis (aOR=1.7 (1.2-2.2)) and cholelithiasis (aOR=1.3 (1.2-1.4)). Individuals with homozygous Pi*S mutation (Pi*SS genotype) harboured minimally elevated alanine aminotransferase values, but no other hepatobiliary abnormalities. Pi*SZ participants displayed higher liver enzymes, more frequent liver fibrosis/cirrhosis (aOR=3.1 (1.1-8.2)) and primary liver cancer (aOR=6.6 (1.6-26.9)). The higher fibrosis burden was confirmed in a multinational cohort. Male sex, age ≄50 years, obesity and the presence of diabetes were associated with significant liver fibrosis. CONCLUSION: Our study defines the hepatobiliary phenotype of individuals with the most relevant AATD genotypes including their predisposition to liver tumours, thereby allowing evidence-based advice and individualised hepatological surveillance

    Numerical simulation of the aluminum–zinc–steel galvanic system for new designs of automotive chassis

    No full text
    The requirement for lighter vehicles in the automotive industry promotes designs based on the combination of different metallic alloys. Such an approach, however, leads to galvanic-corrosion risks, which compromise the durability of vehicles. One proposal to minimize such risks is to separate some of the chassis components by a Zn washer. The present work uses the finite element method to evaluate such an innovative design. The capacity of the washer to protect its aluminum alloy and carbon steel neighbors is assessed. As a worst-case scenario, the bare metals are in contact with NaCl solution. Two electrolyte layer thicknesses are assumed: in the micrometer and in the millimeter range. Each case requires different mathematical models. For the thin film case, the zinc washer is able to protect its neighbors from corrosion. However, it sustains large corrosion rates, and thus its protection is effective only during short periods. Furthermore, as the Zn surface degrades and thus recesses, the “protective field” is blocked by the neighboring metal-walls. The thicker the electrolyte layer, the weaker the Zn protective capability and, at some point, the corrosion of the aluminum alloy is unavoidable
    corecore