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ABSTRACT
Background and aims  Current prognostic scores 
of patients with acutely decompensated cirrhosis 
(AD), particularly those with acute-on-chronic liver 
failure (ACLF), underestimate the risk of mortality. This 
is probably because systemic inflammation (SI), the 
major driver of AD/ACLF, is not reflected in the scores. 
SI induces metabolic changes, which impair delivery 
of the necessary energy for the immune reaction. This 
investigation aimed to identify metabolites associated 
with short-term (28-day) death and to design 
metabolomic prognostic models.
Methods  Two prospective multicentre large cohorts 
from Europe for investigating ACLF and development 
of ACLF, CANONIC (discovery, n=831) and PREDICT 
(validation, n=851), were explored by untargeted serum 
metabolomics to identify and validate metabolites which 
could allow improved prognostic modelling.
Results  Three prognostic metabolites strongly 
associated with death were selected to build the 
models. 4-Hydroxy-3-methoxyphenylglycol sulfate is 
a norepinephrine derivative, which may be derived 
from the brainstem response to SI. Additionally, 
galacturonic acid and hexanoylcarnitine are associated 
with mitochondrial dysfunction. Model 1 included only 
these three prognostic metabolites and age. Model 2 
was built around 4-hydroxy-3-methoxyphenylglycol 
sulfate, hexanoylcarnitine, bilirubin, international 
normalised ratio (INR) and age. In the discovery cohort, 
both models were more accurate in predicting death 
within 7, 14 and 28 days after admission compared 
with MELDNa score (C-index: 0.9267, 0.9002 and 

0.8424, and 0.9369, 0.9206 and 0.8529, with model 
1 and model 2, respectively). Similar results were found 
in the validation cohort (C-index: 0.940, 0.834 and 
0.791, and 0.947, 0.857 and 0.810, with model 1 
and model 2, respectively). Also, in ACLF, model 1 and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Model for end-stage liver disease (MELD) score 
is an excellent predictor of survival.

	⇒ MELD and MELDNa are used for liver transplant 
allocation.

	⇒ Both scores underestimate the risk of death of 
patients with acutely decompensated cirrhosis 
(AD), particularly those with acute-on-chronic 
liver failure (ACLF).

WHAT THIS STUDY ADDS
	⇒ Identify three prognostic metabolites strongly 
associated with death.
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	⇒ Particularly better in patients with AD and ACLF.
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	⇒ These models may be used for risk stratification 
in studies.

	⇒ Ultimately, these models may be implemented 
and optimise allocation of scarce medical 
resources such as liver transplantation.
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model 2 outperformed MELDNa 7, 14 and 28 days after admission for 
prediction of mortality.
Conclusions  Models including metabolites (CLIF-C MET) reflecting SI, 
mitochondrial dysfunction and sympathetic system activation are better 
predictors of short-term mortality than scores based only on organ 
dysfunction (eg, MELDNa), especially in patients with ACLF.

INTRODUCTION
Acutely decompensated cirrhosis (AD) is a heterogeneous condi-
tion.1 1–3 The association of AD with organ failure(s) defines 
its maximal form, the acute-on-chronic liver failure (ACLF) 
syndrome.3 AD occurs in the setting of bursts of systemic inflam-
mation (SI) which are particularly severe in patients developing 
ACLF,4 5 rendering SI of critical pathogenetic importance in AD.

Prognosis of patients hospitalised with AD relates to clinical 
features present at hospital admission. Cirrhosis decompensa-
tions are precipitated by proinflammatory events, mainly infec-
tions and/or acute alcoholic hepatitis, or even potentially from 
episodes of bacterial translocation from the intestinal microbiota 
in patients without an identified precipitant.6–8

ACLF is present at admission in 20%–25% of patients with 
AD3 and is associated with high short-term mortality (22% at 
28 days).1 The course of ACLF is highly dynamic since it may 
improve or deteriorate or follow a steady course within a few 
days after admission, which also correlates with prognosis.9 
Similarly, approximately 20% of all patients hospitalised without 
ACLF develop the syndrome within 3 months (pre-ACLF) and 
have a mortality rate comparable to that of patients with ACLF 
(30% at 28 days).10–12 Therefore, the dynamics of AD also deter-
mine short-term prognosis.

Prognostication of patients with AD improved with the intro-
duction of the MELD score in 2001.13 However, MELD (Model 
for end-strage liver disease) was designed to be independent 
of subjective clinical features. The modifications of MELD, 
including sodium to MELD-Na14 and female sex in MELD 
3.015 scores, slightly improved the global mortality prediction 
and has been incorporated to guide transplant allocation (online 
supplemental tables 1, 2). Despite these improvements, recent 
studies have shown that MELD-Na may not be sufficiently accu-
rate to predict early prognosis in patients with ACLF.16–18 Even 
the specific Chronic Liver Failure Consortium ACLF (CLIF-C 
ACLF) score fails to predict short-term prognosis in a significant 
number of patients.16

Metabolomics seem to deliver appropriate biomarkers for 
prognosis, as shown for several diseases also driven by SI and 
organ dysfunction, including sepsis and COVID-19.19–22 In 
cirrhosis, a set of metabolites, the so-called ‘ACLF-related metab-
olomic fingerprint’, strongly correlates with severity of SI and 
ACLF.23 In addition, survival and the outcome of encephalop-
athy or kidney failure in decompensated cirrhosis correlate with 
plasma, cerebrospinal fluid, serum and urinary metabolites,21–24 
which may at least partly derive from intestinal microbes.25

Therefore, we aimed to identify metabolites that correlate 
with short-term mortality and to construct short-term prog-
nostic metabolomic models that would improve prognostication 
in AD and ACLF.

PATIENTS AND METHODS
The CANONIC and PREDICT cohorts
The study was based on data from the CANONIC and PREDICT 
study cohorts. The CANONIC study, performed on 1343 
consecutive patients from February to September 2011, aimed 

to assess prevalence, diagnostic criteria, mechanisms, clinical 
course and outcome of ACLF.3 The PREDICT study, performed 
from March 2017 to July 2018 in 1271 patients, was initially 
designed to explore precipitating events and early (3-month) 
clinical course of AD only in patients hospitalised without ACLF. 
However, a few months after study onset, we also recruited 202 
consecutive patients hospitalised with ACLF as controls.1 6

Clinical and standard laboratory data and biobanking mate-
rial were obtained in both cohorts at hospital admission and 
sequentially during hospitalisation in the CANONIC cohort, 
and at admission and during 3 months after admission in the 
PREDICT cohort. Follow-up liver transplantation and mortality 
were recorded in both studies. The current article includes 
1682 patients explored by untargeted metabolomics of serum 
samples obtained at enrolment (831 and 851 patients from the 
CANONIC and PREDICT studies, respectively). The identifica-
tion of the death-related metabolomic fingerprint was obtained 
by using both cohorts and clustering prognostic results hierar-
chically. The design of the metabolomic models was performed 
in the CANONIC cohort and validated in the PREDICT cohort. 
The PREDICT study has been registered in ​ClinicalTrials.​gov as 
NCT03056612.

Untargeted metabolomics
Untargeted metabolomics was performed in the two cohorts 
using identical methodology and at the same laboratory, using 
conditions described before.23 Metabolites were extracted from 
serum by methanol-assisted protein precipitation and analysed 
by liquid chromatography coupled to high-resolution mass 
spectrometry (LC-HRMS) using a combination of two comple-
mentary chromatographic methods consisting of reversed-phase 
chromatography (C18 chromatographic column) and hydro-
philic interaction liquid chromatography (HILIC) for the anal-
ysis of metabolites (excluding fatty acids and complex lipids). 
LC-HRMS experiments were conducted on an Ultimate 3000 
chromatographic system (Thermo Fisher Scientific, Courtaboeuf, 
France) coupled to an Exactive or a Q-Exactive high-resolution 
mass spectrometer (Thermo Fisher Scientific) interfaced with 
an electrospray ionisation source operating in the positive and 
negative ion modes for C18 and HILIC separations, respectively. 
Quality control (QC) samples were obtained by pooling aliquots 
of each sample and were injected every 10 samples throughout 
the experiments for further data normalisation/standardisa-
tion. In addition, a cocktail of standards, carefully chosen not 
to interfere with endogenous metabolites, was added to every 
analysed sample to monitor performances of chromatographic 
separation and mass spectrometry detection.24 25 Data processing 
was performed using the Workflow4Metabolomics (W4M) plat-
form.26 Annotation of metabolite features was first performed 
by comparison of accurate measured masses, chromatographic 
retention times and MS/MS spectra to an in-house library made 
from ~1200 authentic pure standards analysed under identical 
conditions. To ensure accurate and consistent metabolite quan-
tification, chromatographic peaks of the annotated metabolites 
were integrated for subject, patient and QC samples by using 
the Trace Finder software (Thermo Fisher Scientific). Peak inte-
grations were then manually reviewed for each sample and the 
resulting peak areas were normalised with respect to QC samples 
with the LOESS algorithm to correct for variation resulting 
from batch-to-batch signal differences.27 Metabolite signals 
were then filtered according to the following criteria: (1) the 
correlation between QC dilution factors and areas of chromato-
graphic peaks (relevant metabolites should have coefficients of 
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correlation above 0.7); (2) repeatability (the coefficient of vari-
ation obtained on chromatographic peak areas of QC samples 
should be below 30%); and (iii) ratio of chromatographic peak 
areas of biological to blank samples above a value of 3. The 
resulting dataset was expressed in arbitrary units, representing 
the area of the chromatographic peak for each metabolite. We 
did not apply batch effect correction between cohorts.

Analysis of data
Variables are described by their absolute value and relative 
percentage or by their median and IQR and compared between 
study cohorts through χ2 or Kruskal-Wallis’ hypothesis testing, as 
appropriate. A log2 transformation of the metabolite levels has 
been carried out before computing the fold change and corre-
sponding p value when comparing survivors and non-survivors 
at 28 days in each study cohort. These comparisons have been 
represented using volcano and Cleveland plots. P values offered 
in the volcano plots were adjusted by Benjamini & Hochberg 
methods to control the false discovery rate. How mortality is 
distributed along time has been evaluated through the estimation 
of the cumulative incidence function and compared with Gray’s 
test.

Ability to predict the risk of death has been computed using 
Harrell’s concordance index (C-index). The C-index allows for 
the combination of both the event occurrence and the time to 
such event, ranging from 0 to 1. The estimated C-index for a 
certain model quantifies its ability to discriminate early events 
(ie, high-risk patients). Thus, C-index values closer to one indi-
cate the tested model can predict, among two random patients, 
which one has the larger risk of death, while values closer to 
0.5 would correspond to a model discriminating at random. 
Considering the estimated C-index for individual metabolites 
in both study cohorts, hierarchical clustering analysis has been 
performed to discriminate a common death-related metabo-
lomic fingerprint, a cluster of blood metabolites that shares a 
large ability to predict patients’ risk of death. The identification 
of the death-related metabolomic fingerprint was performed 
with a time limit of mortality of 28 days.

The 10 best common and quantifiable individual predictors 
from this fingerprint have been included in a multivariate Cox 
regression model, adjusted by age, to assess their independent 
association with 28-day mortality in the CANONIC study 
cohort. Working within Fine and Gray’s framework, the models 
consider death as the primary event and liver transplant as 
the competing one. Backwards stepwise procedures have been 
carried out to finalise the model (variables with the largest non-
significant p values (p>0.01) were iteratively removed from the 
model until all variables shared a significant association with the 
outcome). Two metabolomic models were developed. Model 1 
(online supplemental table 1) includes three metabolites inde-
pendently associated with 28-day mortality, in addition to age 
as a possible confounder. In model 2 (online supplemental 
table 1), the same selection procedures were followed adding a 
small set of four common laboratory measures with well-known 
prognostic significance (creatinine, bilirubin, international 
normalised ratio (INR) and white cell count (WCC)). Once 
models 1 and 2 were found, they were scaled so they ranged from 
0 to 100 (with an approximate median of 50), and their predic-
tive ability was estimated through the C-index and compared 
with the MELDNa score in the whole cohort of patients and 
in patients with or without ACLF separately. To assess whether 
the described models performed better, a minimum difference of 
0.05 between C-indices was considered clinically relevant when 

predicting a patient’s outcome. That difference has been esti-
mated and tested by bootstrapping C-index estimates over 100 
iterations in a randomly selected subsample representing 70% 
of the overall sample. The significance level for such differences 
has been reduced to 1% to account for the multiple compari-
sons performed. Uncertainty of the resulting C-indices has been 
assessed by estimating the SD at 28 days by jack-knife. All anal-
yses presented have been conducted on a complete-case basis.

RESULTS
Characteristics of discovery and validation cohorts
There were more patients with ACLF in the CANONIC cohort 
compared with the PREDICT (table  1), which is related to 
differences in intended design of both cohorts and explains 
significant differences in clinical and laboratory characteristics at 
enrolment. Patients in the CANONIC cohort presented signifi-
cantly higher prevalence of precipitating events and organ fail-
ures. Mortality rates, however, were not significantly different 
between both cohorts and between the subgroups of patients 
with ACLF (table 1). The percentage of patients who received 
liver transplantation within 28 days was very low in both cohorts 

Table 1  Characteristics of the patients in the CANONIC and PREDICT 
study cohorts at enrolment

Characteristic

Discovery set: 
CANONIC study 
cohort
(n=831)

Validation set: 
PREDICT study 
cohort
(n=851) P value

Age (years) 57 (50–66) 59 (52–67) <0.001

Sex (female, %) 292 (35.14) 268 (31.49) 0.125

Ascites (%) 526 (63.6) 602 (70.74) 0.002

Hepatic encephalopathy (%) 275 (33.09) 276 (32.43) 0.813

Gastrointestinal bleeding (%) 134 (16.13) 127 (14.92) 0.540

Bacterial infection (%) 194 (23.35) 279 (32.78) <0.001

Alcoholic steatohepatitis (%) 116 (14.36) 65 (7.64) <0.001

Sepsis (%) 127 (15.7) 108 (12.84) 0.112

Liver failure (%) 115 (13.86) 76 (8.93) 0.002

Renal failure (%) 112 (13.48) 64 (7.52) 0.000

Brain failure (%) 52 (6.27) 33 (3.88)

Coagulation failure (%) 76 (9.31) 44 (5.18) 0.002

Circulatory failure (%) 33 (4.05) 15 (1.76)

Respiratory failure (%) 21 (3) 6 (0.71)

Presence of ACLF (%) 181 (21.78) 109 (12.84) <0.001

ACLF grade (%) <0.001

 � ACLF-1 97 (11.67) 74 (8.72)

 � ACLF-2 65 (7.82) 25 (2.94)

 � ACLF-3 19 (2.29) 10 (1.18)

Patients in intensive care unit (%) 44 (5.32) 78 (9.17) 0.003

Liver transplant at 28 days (%) 28 (3.37) 15 (1.83) 0.071

Mortality at 28 days (%)

 � All patients 79 (9.51) 75 (8.81) 0.683

 � ACLF patients 48 (26.52) 30 (27.52) 0.852

 � AD non-ACLF patients 31 (4.77) 45 (6.08) 0.283

Hematocrit (%) 30.4 (26.4–34.38) 29.5 (26–34) 0.024

White cell count (×109/L) 5.94 (4.14–9.29) 6.47 (4.4–9.24) 0.185

International normalised ratio 1.48 (1.29–1.83) 1.46 (1.27–1.73) 0.038

Albumin (g/dL) 2.9 (2.5–3.3) 2.8 (2.44–3.3) 0.171

Aspartate aminotransferase (U/L) 62 (37.5–101) 54 (34–87) 0.001

Alanine aminotransferase (U/L) 35 (22–55) 29 (19–44.93) <0.001

Serum bilirubin (mg/dL) 3 (1.6–6.88) 2.67 (1.42–5.8) 0.003

Serum creatinine (mg/dL) 0.95 (0.72–1.4) 0.93 (0.7–1.29) 0.075

ACLF, acute-on-chronic liver failure; AD, acutely decompensated cirrhosis.
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(1.83% and 3.37%; p value=0.0709), which is consistent with 
the low indication for this procedure for ACLF in Europe over 
the past decade (1). The PREDICT cohort served as a valida-
tion set for relevant pathophysiological metabolomic pathways, 
prognostic metabolites and metabolomic models discovered in 
the CANONIC cohort.

Elevated levels of serum metabolites were associated with 
high 28-day mortality
Figure  1A,B shows the volcano plots illustrating the pairwise 
comparison of each of the 130 annotated metabolites expressed 
in fold change (FC) between patients who died within 28 days 
after enrolment versus those who survived in each cohort. 
There was a clear shift to the right of most metabolites in the 
two cohorts indicating upregulated metabolites in patients who 
died versus those who survived. The FC increase was more than 
twofold for 34 metabolites in the CANONIC cohort (figure 1A) 
and in seven metabolites in the PREDICT cohort (figure  1B). 
Figure  1C illustrates the whole set of metabolites in the two 
cohorts ranked according to the FC between non-survivors and 
survivors in the CANONIC cohort. The 50 top metabolites in 
the CANONIC cohort are represented in the zooming inset. 
The FC of all these metabolites was higher in the CANONIC 
than in the PREDICT study patients, indicating a more intense 
metabolomic change in the former group. There was, however, 
a close relationship between the FC of these metabolites from 
both cohorts (Pearson’s correlation=0.81; p value <0.0001).

Of note, we tried to build prediction models using clinical 
routine parameters, such as interleukin-6 (IL-6) and WCC. 
When trying to build a clinical model with age, creatinine, bili-
rubin, INR, WCC and IL-6, a final clinical model was obtained 
with only age, creatinine, bilirubin and INR. This represents 
an updated version of MELD together with age that shared the 
same predictive ability at 28 days as the MELDNA score (0.780 
vs 0.785). Therefore, we moved to the metabolites as next.

Identification of a common death-related metabolomic 
fingerprint in the CANONIC and PREDICT cohorts
We next investigated the association between the serum metabo-
lome and 28-day mortality. For each of the 130 metabolites and 
for each cohort, we estimated the Harrel’s concordance index 
(C-index) assessing the discriminating accuracy of the metabolite 
levels, expressed in relative units corresponding to chromato-
graphic peak areas, in differentiating prognosis (considering 
death as the primary event and liver transplant as the competing 
risk) (online supplemental table 3). We then created a two-
column heatmap, one for each cohort, in which each row (one 
per metabolite) was grouped according to the hierarchical clus-
tering of the observed C-indices (figure  2). A 29-metabolite 
cluster with the highest C-index values was then shown to be 
shared by the two cohorts, defining the death-related metabo-
lomic fingerprint of AD.

The death-related metabolomic fingerprint of AD largely 
coincides with the ACLF-related metabolomic fingerprint
In a previous study in the CANONIC cohort,23 we identified a 
fingerprint of 38 metabolites whose intensity correlated with the 
severity of SI and discriminated patients with ACLF of any grade 
from patients with mere AD and healthy controls. Based on this 
ACLF-related metabolomic fingerprint, we were able to under-
stand the metabolomic hallmark of AD and to propose new 
pathophysiological mechanisms for the progression of compen-
sated to decompensated cirrhosis and to ACLF.2 23 Importantly, 

25 metabolites of the death-related metabolomic fingerprint 
were among the 38 metabolites of the ACLF-related metabo-
lomic fingerprint (online supplemental table 4), indicating that 
both pathophysiological mechanisms and prognosis of AD relies 
on the dysfunctional metabolic pathways.

Metabolomic models (CLIF-C MET) 1 and 2 predict prognosis 
better than the MELDNa score in AD
We next developed models 1 and 2 (online supplemental table 
1) as follows:

CLIF-C MET model 1: [0.02396·Age+0.32981·log2(4-
hydroxy-3-methoxyphenylglycol sulfate)+0.45602·l
og2(hexanoylcarnitine)+0.27226·log2(D-galacturonic 
acid)–18.1561]/0.0965.

CLIF-C MET model 2: [0.03432·Age+0.34020·log2(4-
hydroxy-3-methoxyphenylglycol sulfate) + 0.50724·log2(hex-
anoylcarnitine)+0.04037·Serum bilirubin+0.34674
·INR–14.6517]/0.1218.

The rank of the prognostic estimates was derived from 
the CANONIC cohort. Eleven out of the top 15 quantifiable 
prognostic metabolites in the CANONIC cohort (table  2, 
upper list) were among the top 15 prognostic metabolites in 
the PREDICT cohort, indicating a high level of concordance 
between both cohorts. The chromatographic peak area of the 
top 10 metabolites with the largest prognostic estimates in the 
CANONIC study plus age were entered to construct model 1. 
4-Hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, 
D-galacturonic acid and age were the final variables included 
into the model. Model 2 was designed to assess whether 
adding clinical prognostic variables to prognostic metabo-
lites could improve prediction of mortality. Therefore, model 
2 was constructed using the top 10 prognostic metabolomic 
estimates in the CANONIC cohort plus age, serum bilirubin, 
serum creatinine, INR and WCC. At the end, model 2 included 
4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, 
bilirubin, INR and age. The process, however, resulted in a 
non-significant increase in prognostic prediction with respect to 
model 1 (table 3).

We then compared the short-term prognostic accuracy of 
models 1 and 2 with the MELDNa score at days 7, 14, 28 and 
90 after enrolment in all patients included in the CANONIC 
and PREDICT cohorts (table 3) and in the subgroups of patients 
with or without ACLF separately (table 4). Models 1 and/or 2 
were more accurate than the MELDNa score in the CANONIC 
discovery cohort at days 7, 14 and 28, and these findings were 
validated in the PREDICT cohort. In patients with or without 
ACLF, such differences extended up to day 90 after enrol-
ment. The CLIF-C ACLF score also functioned better than the 
MELDNa score in patients with ACLF, while the CLIF-C AD 
score performed better than the MELDNa in patients without 
ACLF during the first 2 weeks and at 90 days.

Table 2 (lower list) compares the individual predictive ability 
of the four standard laboratory variables of the MELDNa score, 
estimated through the C-index, in both study cohorts. Variables 
are ranked according to their corresponding C-index. The indi-
vidual predictive ability of the standard laboratory variables was 
lower than that of any of the 15 top prognostic metabolites in 
both cohorts. The distinct predictive value of the MELD scores 
and the metabolomic models, therefore, relates to differences in 
the intrinsic predicting ability of their variables.

Finally, online supplemental figure 1 evaluates how patients 
with or without ACLF behave along time and the uncertainty 
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Figure 1  Mortality at 28 days is associated with a general increase in metabolite levels. (A) Volcano plots showing the results of pairwise 
comparisons of blood metabolites levels of patients from CANONIC (left) and PREDICT (right) study cohorts relative to mortality at 28 days. The 
vertical dashed lines indicate the threshold for the twofold abundance difference. The horizontal dashed line indicates the p value=0.05 threshold. (B) 
Cleveland plots. Overview of the fold change of all detected metabolites between patients who died within 28 days after enrolment versus those who 
survived in each cohort in both CANONIC and PREDICT (red and blue dots, respectively) study cohorts, using CANONIC cohort as reference. Left inset 
shows the annotation of the top 50 metabolites.
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Figure 2  Metabolite abilities to predict mortality at 28 days and their similarities between study cohorts. Hierarchical clustering analysis of C-index 
values obtained assessing mortality at 28 days with each measured metabolite in the CANONIC (left column) and the PREDICT (right column) study 
cohort. Vertical green bar and inset identify the cluster formed by the 29 metabolites with the highest C-index in both cohorts.
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their number might introduce. The incidence of mortality and 
its short-term distribution does not differ between cohorts (p 
value=0.8499 for patients with AD-ACLF, p value=0.2415 for 
AD-no ACLF patients). C-index estimates are more imprecise 
for patients with ACLF in the PREDICT cohort, with larger SD 
for all models and scores considered, while the opposite is found 
for AD-no ACLF patients.

DISCUSSION
Patients with pre-ACLF and ACLF, who represent approximately 
40% of patients hospitalised for AD, are at high risk of dying 
(25%) within 28 days after admission. Patients with ACLF are 
easily identifiable by clinical and standard laboratory features. 
However, those with pre-ACLF cannot be differentiated from the 
rest of the patients without ACLF and better prognosis. Patients 
hospitalised with AD, therefore, require highly sensitive short-
term prognostic scoring systems for rapid indication of extreme 
therapeutic measures, including emergency liver transplantation. 
The MELDNa score is the universal model used for prediction of 

Table 2  Fifteen top metabolites from the death-related metabolomic 
fingerprint and standard laboratory variables in the CANONIC cohort 
ranked by their predictive ability through C-index estimation and their 
corresponding position and C-index in the PREDICT cohort

Variables

Discovery set: 
CANONIC study 
cohort

Validation set: 
PREDICT study 
cohort

Rank C-index Rank C-index

Metabolite  �   �   �   �

 � 4-Hydroxy-3-methoxyphenylglycol sulfate 1 0.822 1 0.760

 � Hexanoylcarnitine 2 0.799 4 0.721

 � L-Saccharopine 3 0.786 12 0.704

 � N-Acetyl-aspartil-glutamate 4 0.782 9 0.709

 � p-Hydroxyphenyllactic acid 5 0.777 2 0.733

 � D-Galacturonic acid 6 0.766 3 0.724

 � N-Acetyl-L-alanine 7 0.759 20 0.684

 � Butyrylcarnitine 8 0.759 21 0.681

 � Cystathionine 9 0.757 8 0.711

 � Octanoylcarnitine 10 0.747 10 0.707

 � 5'-Deoxy-5'-(methylthio)adenosine 11 0.747 11 0.707

 � β-Pseudouridine 12 0.746 26 0.664

 � Phenyllactic acid 13 0.742 14 0.699

 � N6,N6,N6-Trimethyl-L-lysine 14 0.742 5 0.719

 � N-Acetyl-L-tyrosine 15 0.741 18 0.687

Standard laboratory variables*

 � INR 1 0.726 1 0.687

 � Bilirubin 2 0.695 2 0.676

 � Creatinine 3 0.672 3 0.621

 � Sodium 4 0.630 4 0.616

*Standard laboratory variables consider the cut-offs presented in the definition of the 
MELDNa score.
INR, international normalised ratio.

Table 3  Description of models to predict risk of mortality at several 
time points and their predictive ability in the CANONIC (discovery set) 
and the PREDICT (validation set) study cohorts

Model

C-index

At 7 
days

At 14 
days

At 28 
days

At 60 
days

At 90 
days

Discovery set: CANONIC study cohort (n=831)

 � % of deaths 2.41% 5.78% 9.51% 15.52% 18.53%

 � CLIF-C MET 1 0.927 0.900 0.842 0.805 0.784

 � CLIF-C MET 2 0.937 0.921 0.853 0.808 0.784

 � MELDNa score 0.810*† 0.813*† 0.788*† 0.779 0.772

Validation set: PREDICT study cohort (n=851)

 � % of deaths 1.18% 4.58% 8.81% 15.28% 18.21%

 � CLIF-C MET 1 0.940 0.834 0.791 0.780 0.771

 � CLIF-C MET 2 0.947 0.857 0.810 0.788 0.777

 � MELDNa score 0.793*† 0.773† 0.755† 0.713*† 0.700*†

Set of variables included initially in model 1: log2(4-hydroxy-3-methoxyphenylglycol 
sulfate, log2(hexanoylcarnitine), log2(L-Saccharopine), log2(N-Acetyl-aspartil-
glutamate), log2(p-Hydroxyphenyllactic acid), log2(D-Galacturonic acid), log2(N-
Acetyl-L-alanine), log2(butyrylcarnitine), log2(cystathionine), log2(octanoylcarnitine) 
and age. Model 2 also included creatinine, bilirubin, INR and white cell count.
*P value <0.01 compared with the metabolomic model 1 for differences larger than 
0.05.
†P value <0.01 compared with the metabolomic model 2 for differences larger than 
0.05.
CLIF-C ACLF, Chronic Liver Failure Consortium ACLF; INR, international normalised 
ratio.

Table 4  Description of models to predict risk of mortality at several 
time points and their predictive ability in patients diagnosed with 
or without ACLF in the CANONIC (discovery set) and the PREDICT 
(validation set) study cohorts

Model

C-index

At 7 days
At 14 
days

At 28 
days

At 60 
days

At 90 
days

AD-ACLF patients

Discovery set: CANONIC study cohort (n=181)

 � % of deaths 7.73% 18.23% 26.52% 35.91% 40.33%

 � CLIF-C MET 1 0.868 0.844 0.794 0.757 0.744

 � CLIF-C MET 2 0.875 0.872 0.819 0.791 0.772

 � CLIF-C ACLF score 0.757*† 0.793† 0.760† 0.734 0.720†

 � MELDNa score 0.671*†‡ 0.711*†‡ 0.696*†‡ 0.707† 0.703†

Validation set: PREDICT study cohort (n=109)

 � % of deaths 4.59% 16.51% 27.52% 34.86% 37.61%

 � CLIF-C MET 1 0.914 0.724 0.717 0.714 0.714

 � CLIF-C MET 2 0.892 0.730 0.733 0.722 0.721

 � CLIF-C ACLF score 0.879 0.763 0.728 0.683† 0.670*†

 � MELDNa score 0.601*†‡ 0.592*†‡ 0.644*†‡ 0.649*† 0.643*†

AD-no ACLF patients

Discovery set: CANONIC study cohort (n=650)

 � % of deaths 0.92% 2.31% 4.77% 9.85% 12.46%

 � CLIF-C MET 1 0.916 0.871 0.781 0.764 0.741

 � CLIF-C MET 2 0.942 0.895 0.787 0.750 0.729

 � CLIF-C AD score 0.768*† 0.769*† 0.752 0.733 0.736

 � MELDNa score 0.715*† 0.686*†‡ 0.693*†‡ 0.723 0.723

Validation set: PREDICT study cohort (n=742)

 � % of deaths 0.67% 2.83% 6.06% 12.40% 15.36%

 � CLIF-C MET 1 0.928 0.841 0.769 0.769 0.760

 � CLIF-C MET 2 0.945 0.864 0.781 0.769 0.759

 � CLIF-C AD score 0.839*† 0.798† 0.723 0.715 0.707

 � MELDNa score 0.757*†‡ 0.726*†‡ 0.694*† 0.668*† 0.660*†‡

*P value <0.01 compared to the metabolomic model 1 for differences larger than 
0.05.
†P value <0.01 compared to the metabolomic model 2 for differences larger than 
0.05.
‡P value <0.01 compared to the CLIF-C ACLF/CLIF-C AD score for differences larger 
than 0.05.
ACLF, acute-on-chronic liver failure; AD, acutely decompensated cirrhosis; CLIF-C 
ACLF, Chronic Liver Failure Consortium ACLF.
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prognosis and prioritisation of liver transplantation in patients 
with AD.12 However, as suggested by recent studies,13–15 and 
clearly shown by the current investigation, MELD score and its 
modification (MELDNa score) are imperfect indicators of short-
term mortality in patients with AD, pre-ACLF and ACLF.

In this study, we showed that the models CLIF-C MET, based 
on metabolites and more specifically from glucose, fatty acids 
and amino acid metabolic pathways, which currently can only 
be measured by liquid chromatography coupled to mass spec-
trometry, were significantly better prognosticators than MELD 
scores and its upgrades predicting short-term mortality in our 
1682 patients hospitalised with AD. This finding was supported 
by the observation that the C-index of each of the top 15 prog-
nostic metabolites identified in the CANONIC study cohort was 
higher than the C-index of each of the four standard laboratory 
variables included in the MELDNa score (INR, bilirubin, creat-
inine and sodium).

To value the superior accuracy of CLIF-C MET over the 
MELDNa score or of some metabolites versus others in predicting 
short-term mortality in AD, it is important to understand the 
mechanisms by which SI impacts on metabolism and survival. 
This issue, which has been extensively studied in sepsis,26–29 is 
also increasingly being explored in cirrhosis,20 30 31 with solid 
data showing that both conditions share similar pathophysio-
logical pathways. Severe SI is among the most common acute 
stressful situations in humans and leads to a coordinated stress 
(alarm) response by the central nervous system, endocrine system 
and metabolism, to fight against the stressor.27–29 The routine 
inflammation markers (WCC, C-reactive protein (CRP), IL-6) 
either alone or in combination with (or within) CLIF-C AD and 
CLIF-C ACLF score performed worse than the new models in 
the prediction of mortality in patients with and without ACLF.

Most of the 29 metabolites included in the ‘death-related 
metabolomic fingerprint’ belonged to metabolic pathways related 
to the alarm response to SI and secondary impairment in mito-
chondrial function. The top short-term prognostic metabolite 
identified in our patients was 4-hydroxy-3-methoxyphenylglycol 
sulfate, which belongs to the phenylalanine-tyrosine pathway 
and is the terminal metabolite of norepinephrine and, there-
fore, marks the intensity of the alarm reaction to SI. In order 
to explain these findings, one should remember that the alarm 
response is initiated within specific areas in the brainstem 
and hypothalamus which have no blood-brain barrier and are 
inflamed by circulating pathogen associated molecular pattern 
(PAMPs), danger associated molecular pattern (DAMPs) and 
inflammatory mediators.27 Central nervous nodes (eg, locus 
coeruleous32) integrate inputs from multiple alarm responsive 
circuits and releases norepinephrine initiating the metabolic 
response to SI, which results in a massive release of glucose, 
fatty acids and amino acids from tissue stores to the periphery 
and prioritisation of energy metabolism to the immune cells, to 
cover the high energy demands of the systemic inflammatory 
reaction.28 29 As discussed above, the top prognostic metabolite 
identified in our patients was 4-hydroxy-3-methoxyphenylglycol 
sulfate, a terminal metabolite of norepinephrine closely related 
to the alarm reaction.

Interestingly, the acylcarnitine hexanoylcarnitine was the 
second top predictor of the 28-day mortality. Due to the down-
regulation of mitochondrial metabolism of fatty acids in AD, 
acylcarnitines accumulate in the cytosol and in blood, and are 
thus a sensitive marker of mitochondrial dysfunction. In our 
patients, there was downregulation of mitochondrial metabo-
lism of fatty acids, as indicated by the high circulating levels of 
acylcarnitines. Inhibition of strategic mitochondrial enzymatic 

processes (pyruvate dehydrogenase complex and enzymes regu-
lating β-oxidation) by SI likely contributes to the dysregulation of 
glucose and fatty acid metabolism in AD.33 However, in extreme 
cases with intense SI, that is, patients with rapid development of 
severe ACLF, an exaggerated mitochondrial generation of reac-
tive oxygen species and physical mitochondrial damage may play 
a predominant role.33

Finally, five molecules derived from downregulation of the 
mitochondrial metabolism of glucose (galacturonic acid, glucu-
ronic acid, pentose-phosphates, pentose alcohols and D-th-
reitol) were components of the death-related metabolomic 
fingerprint. Among them, galacturonic acid, together with 
4-hydroxy-3-methoxyphenylglycol sulfate and hexanoylcarni-
tine, was the third independent predictor of the 28-day survival 
identified in our patients. The individual 28-day prognostic 
accuracy of 4-hydroxy-3-methoxyphenylglycol sulfate and hexa-
noylcarnitine (C-index 0.822 and 0.799, respectively) exceeded 
the accuracy of the MELDNa score in the whole CANONIC 
study cohort (0.788) and particularly in the subgroup of patients 
with ACLF (0.6). Therefore, similar to sepsis,26 the second most 
relevant metabolic change associated with SI in our patients 
indicates a dysregulation of intracellular metabolism of glucose 
and fatty acids by the immune cells. Instead of being sequentially 
metabolised by glycolysis in the cytosol and by the Krebs cycle 
and oxidative phosphorylation in the mitochondria, glucose 
metabolism in our patients was probably metabolised in the 
cytosol through glycolysis and the pentose phosphate pathway. 
This study validates the pathophysiological importance of mito-
chondrial dysfunction not only in immune cells but probably 
also in organs inducing dysfunction and/or failure.

Consistent with the above observations, model 1, including 
age, the plasma levels of 4-hydroxy-3-methoxyphenylglycol 
sulfate, hexanoylcarnitine and galacturonic acid, showed signifi-
cantly higher short-term prognostic accuracy than the MELDNa 
score in the CANONIC and PREDICT cohorts. The accuracy 
of this model was also remarkably higher than the accuracy of 
the MELDNa score in patients with ACLF, for whom emergency 
liver transplantation is specifically indicated.15 34 35 In patients 
without ACLF, CLIF-C MET models also improved the predic-
tive ability of MELDNa score. While CLIF-C AD score accu-
racy was considerably worse than the metabolomic model 1, 
we reported minor differences because of the restrictions we 
imposed for the comparisons. Defining a minimum difference 
to be found between C-indices is not common practice, but we 
believe it gives clinical relevance to the results obtained. It is 
interesting to note that model 2, which used the two top prog-
nostic metabolites and prognostic standard laboratory tests, did 
not significantly improve the results obtained by model 1 using 
only metabolites.

The reduced number of patients with ACLF in the PREDICT 
cohort did not seem a source of bias in the C-index estimates, 
as mortality occurrence and distribution along time were not 
different between cohorts. The uncertainty in such estimates 
was slightly larger for all models in the validation cohort for 
this subset of patients, which could be partially explained by its 
reduced sample size. Even with this increase in the uncertainty, 
we could still find significant differences among the models’ 
accuracy.

Our study has one potential limitation. While the CANONIC 
study was performed in consecutive patients hospitalised with 
AD, the PREDICT study initially enrolled only patients without 
ACLF and later incorporated patients hospitalised with ACLF, 
leading to differences in the prevalence of organ failures between 
the two cohorts. However, the two cohorts presented a high level 
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of agreement in the composition of metabolomic fingerprints, 
top prognostic metabolites and superiority of metabolomic 
models over MELD scores in predicting short-term mortality, 
indicating that this limitation had no great impact on the results.

On the contrary, our investigation had several major strengths. 
First, it was performed in the largest series of patients (1682) 
hospitalised with AD reported to date. Second, it is the first 
prognostic metabolomic study in cirrhosis whose results were 
confirmed in a large external validation cohort. Third, our study 
used a liquid chromatography platform coupled with electrospray 
ionisation high-resolution mass spectrometry and an analytical 
pipeline that allowed us to retain high-confidence metabolite 
annotations, based on a combination of accurate mass, reten-
tion time and tandem mass spectrometry characteristics. This 
approach reduced the dimension of the dataset from hundreds of 
metabolic features (‘peaks’) into a manageable number of ca. 130 
metabolites with interpretable biological and pathophysiological 
significance in a complex context of severe SI and multiorgan 
dysfunction/failure. This pragmatic strategy, which in the end 
led to the identification of a death-related metabolomic finger-
print and specifically three highly sensitive prognostic metabo-
lites closely related to new pathophysiological mechanisms of 
AD (alarm response and mitochondrial dysfunction associated 
with SI), paves the way for future implementation of metabo-
lomics in routine clinical practice, as previously described.28 29 
Finally, in our study, the metabolomic assessment was performed 
shortly after the onset of AD in all our patients, when SI and 
metabolic dysregulation were maximal, as suggested before.30 31 
Therefore, we captured the most important metabolic changes 
promoted by the exogenous (infections or acute alcoholic hepa-
titis) and endogenous (bacterial translocation) proinflammatory 
precipitants of AD, and this may also contribute to the higher 
accuracy of metabolomic scores versus clinical scores based on 
liver and renal function. For example, while in patients with pre-
ACLF, organ function deteriorates days or weeks after the onset 
of AD, limiting short-term mortality prediction of standard labo-
ratory variables in a significant number of patients, these subjects 
already show severe SI1 and likely metabolomic derangement at 
the onset of the process.

In summary, our investigation uncovered four features that 
may represent major steps forward for identification of prog-
nosis and early management of patients with AD: (1) It iden-
tified a death-related metabolomic fingerprint of 29 molecules 
that correlated with short-term mortality. (2) It identified two 
top metabolites from this fingerprint (4-hydroxy-3-methoxyph
enylglycol sulfate and hexanoylcarnitine), which were individu-
ally better predictors of short-term mortality than the MELDNa 
score, and the galacturonic acid, which was also independently 
associated with short-term mortality. (3) Such biomarkers are 
related to the alarm response to SI (4-hydroxy-3-methoxypheny
lglycol sulfate) and the secondary impairment in mitochondrial 
function (hexanoylcarnitine and galacturonic acid). (4) CLIF-C 
MET models based on these metabolites were better predictors 
of short-term mortality than MELD scores in patients with AD, 
and particularly when separating patients with or without ACLF 
and may improve organ allocation and promote expediting of 
liver transplantation in these patients. However, prospective 
validation and cost-effective analysis on the performance of 
these markers is required before routine implementation in the 
clinics.
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