123 research outputs found

    Chance and Necessity in Eye Evolution

    Get PDF
    Charles Darwin has proposed the theory that evolution of live organisms is based on random variation and natural selection. Jacques Monod in his classic book Chance and Necessity, published 40 years ago, presented his thesis “that the biosphere does not contain a predictable class of objects or events, but constitutes a particular occurrence, compatible indeed with the first principles, but not deducible from those principals and therefore, essentially unpredictable.” Recent discoveries in eye evolution are in agreement with both of these theses. They confirm Darwin's assumption of a simple eye prototype and lend strong support for the notion of a monophyletic origin of the various eye types. Considering the complexity of the underlying gene regulatory networks the unpredictability is obvious. The evolution of the Hox gene cluster and the specification of the body plan starting from an evolutionary prototype segment is discussed. In the course of evolution, a series of similar prototypic segments gradually undergoes cephalization anteriorly and caudalization posteriorly through diversification of the Hox genes

    Identification of target genes of the homeotic gene Antennapedia by enhancer detection

    Get PDF
    ©1991 by Cold Spring Harbor LaboratoryDOI: 10.1101/gad.5.12b.2467Localized expression of the homeotic gene Antennapedia (Antp) in Drosophila melanogaster is required for normal development of the thoracic segments. When the Antp gene is expressed ectopically in the larval primordium of the antenna, the antennal imaginal disc, the developmental fate of the disc is switched and the adult antenna is transformed to a mesothoracic leg. We screened approximately 550 different fly strains carrying single copies of an enhancer-detector transposon to identify regulatory elements and corresponding genes that are either activated or repressed in antennal discs in response to this transformation. Several regulatory elements that are either direct or indirect targets of Antp were found. One transposant that expresses the reporter gene (lacZ) in the antennal disc, but not in the leg disc, was studied in more detail. The enhancer detector in this strain is located near a similarly regulated gene at the spalt (sal) locus, which encodes a homeotic function involved in embryonic head and tail development. The expression of this newly discovered gene, spalt major (salm) is strongly repressed in gain-of-function mutants that express Antp in the antennal disc. Recessive loss-of-function mutations (Antp-) have the opposite developmental effect; they cause the differentiation of antennal structures in the second leg disc. Accordingly, salm is derepressed in clones of homozygous Antp- cells. Therefore, we conclude that Antp negatively regulates salm. The time course of the interaction and reporter gene fusion experiments suggests (but does not prove) a direct interaction between Antp and cis-regulatory elements of salm. Our analysis of several enhancer-detector strains suggests that the basic patterning information in the antennal and leg imaginal discs is very similar

    Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775

    Get PDF
    Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.

    It Pays to Prepare: Human Motor Preparation Depends on the Relative Value of Potential Response Options

    Get PDF
    Alternative motor responses can be prepared in parallel. Here, we used electroencephalography (EEG) to test whether the parallel preparation of alternative response options is modulated by their relative value. Participants performed a choice response task with three potential actions: isometric contraction of the left, the right, or both wrists. An imperative stimulus (IS) appeared after a warning cue, such that the initiation time of a required action was predictable, but the specific action was not. To encourage advanced preparation, the target was presented 200 ms prior to the IS, and only correct responses initiated within ±100 ms of the IS were rewarded. At baseline, all targets were equally rewarded and probable. Then, responses with one hand were made more valuable, either by increasing the probability that the left or right target would be required (Exp. 1; n = 31) or by increasing the reward magnitude of one target (Exp. 2, n = 36). We measured reaction times, movement vigor, and an EEG correlate of action preparation (value-based lateralized readiness potential) prior to target presentation. Participants responded earlier to more frequent and more highly rewarded targets, and movements to highly rewarded targets were more vigorous. The EEG was more negative over the hemisphere contralateral to the more repeated/rewarded hand, implying an increased neural preparation of more valuable actions. Thus, changing the value of alternative response options can lead to greater preparation of actions associated with more valuable outcomes. This preparation asymmetry likely contributes to behavioral biases that are typically observed toward repeated or rewarded targets

    A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors

    Get PDF
    BACKGROUND: Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. RESULT: We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. CONCLUSIONS: Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users

    Sterile Debates and Dubious Generalisations: An Empirical Critique of European Integration Theory Based on the Integration Processes in Telecommunications and Electricity

    Full text link
    corecore