377 research outputs found

    User Requirements Capture in Distributed Project Environments: A Process-centred Approach

    Get PDF
    Efforts to define standards for representing AEC/FM data have been fairly successful. However defining a standard reference process model has not met with the same success. Yet almost every conceptual modelling or software development project starts by defining the business processes to be supported and the related requirements to be satisfied. This paper describes a new process-centred methodology for user requirements capture developed in the ICCI project (IST-2001-33022). Its essence is in recognising user requirements and use cases in the context of the real construction process, identifying the actors and roles for each individual activity and associating these activities with information, communication and standardisation requirements on the basis of a formalised specification, named the Process Matrix. In the paper we outline the history of process matrix development, introduce the basic structure of the matrix and show how it can be further extended and refined. We present also a web-based software implementation of the developed approach, describe how it has been used in ICCI and outline further perspectives

    Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    No full text
    RATIONALE: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 -yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer – Chromium/High Temperature Conversion – Isotope-Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. METHODS: The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual- detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. RESULTS: The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96 % for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via 2-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. CONCLUSIONS: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment

    A new geometric description for Igusa's modular form (azy)5(azy)_5

    Full text link
    The modular form (azy)5(azy)_5 notably appears in one of Igusa's classic structure theorems as a generator of the ring of full modular forms in genus 2, being exhibited by means of a complicated algebraic expression. In this work a different description for this modular form is provided by resorting to a peculiar geometrical approach.Comment: 10 page

    Turbulent particle transport in magnetized fusion plasma

    Get PDF
    The understanding of the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. A peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices (AUG, DIII-D, JET, TCV, TEXT, TFTR) have indicated the existence of an anomalous inward particle pinch. Recently, such an anomalous pinch has been unambiguously identified in Tore Supra very long discharges, in absence of toroidal electric field and of central particle source, for more than 4 minutes [1]. This anomalous particle pinch is predicted by a quasilinear theory of particle transport [2], and confirmed by non-linear turbulence simulations [3] and general considerations based on the conservation of motion invariants [4]. Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases [5, 6, 7, 8], to the temperature profile [5, 9] and also to the collisionality that changes the nature of the microturbulence [10, 11, 12]. The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density profile in ITER.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme

    Get PDF
    We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ

    New Biotite and Muscovite Isotopic Reference Materials, USGS57 and USGS58, for δ2H Measurements–A Replacement for NBS 30

    Get PDF
    The advent of continuous-flow isotope-ratio mass spectrometry (CF-IRMS) coupled with a high temperature conversion (HTC) system enabled faster, more cost effective, and more precise δ2H analysis of hydrogen-bearing solids. Accurate hydrogen isotopic analysis by on-line or off-line techniques requires appropriate isotopic reference materials (RMs). A strategy of two-point calibrations spanning δ2H range of the unknowns using two RMs is recommended. Unfortunately, the supply of the previously widely used isotopic RM, NBS 30 biotite, is exhausted. In addition, recent measurements have shown that the determination of δ2H values of NBS 30 biotite on the VSMOW-SLAP isotope-delta scale by on-line HTC systems with CF-IRMS may be unreliable because hydrogen in this biotite may not be converted quantitatively to molecular hydrogen. The δ2HVSMOW-SLAP values of NBS 30 biotite analyzed by on-line HTC systems can be as much as 21 mUr (or ‰) too positive compared to the accepted value of −65.7 mUr, determined by only a few conventional off-line measurements. To ensure accurate and traceable on-line hydrogen isotope-ratio determinations in mineral samples, we here propose two isotopically homogeneous, hydrous mineral RMs with well-characterized isotope-ratio values, which are urgently needed. The U.S. Geological Survey (USGS) has prepared two such RMs, USGS57 biotite and USGS58 muscovite. The δ2H values were determined by both glassy carbon-based on-line conversion and chromium-based on-line conversion, and results were confirmed by off-line conversion. The quantitative conversion of hydrogen from the two RMs using the on-line HTC method was carefully evaluated in this study. The isotopic compositions of these new RMs with 1-σ uncertainties and mass fractions of hydrogen are: USGS57 (biotite) δ2HVSMOW-SLAP = −91.5 ± 2.4 mUr (n =24) Mass fraction hydrogen = 0.416 ± 0.002% (n=4) Mass fraction water = 3.74 ± 0.02% (n=4) USGS58 (muscovite) δ2HVSMOW-SLAP = −28.4 ± 1.6 mUr (n =24) Mass fraction hydrogen = 0.448 ± 0.002% (n=4) Mass fraction water = 4.03 ± 0.02% (n =4). These δ2HVSMOW-SLAP values encompass typical ranges for solid unknowns of crustal and mantle origin and are available to users for recommended two-point calibration

    The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology

    Get PDF
    YesBackground: Tracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult. Methods: This study combines whole genome sequence (WGS) data derived from 324 isolates collected 2005–2010 in Kinshasa, Democratic Republic of Congo (DRC), a high endemic setting, with phylodynamics to unveil the timing of transmission events posited by a variety of standard genotyping methods. Clustering data based on Spoligotyping, 24-loci MIRU-VNTR typing, WGS based SNP (Single Nucleotide Polymorphism) and core genome multi locus sequence typing (cgMLST) typing were evaluated. Findings: Our results suggest that clusters based on Spoligotyping could encompass transmission events that occurred almost 200 years prior to sampling while 24-loci-MIRU-VNTR often represented three decades of transmission. Instead, WGS based genotyping applying low SNP or cgMLST allele thresholds allows for determination of recent transmission events, e.g. in timespans of up to 10 years for a 5 SNP/allele cut-off. Interpretation: With the rapid uptake of WGS methods in surveillance and outbreak tracking, the findings obtained in this study can guide the selection of appropriate clustering methods for uncovering relevant transmission chains within a given time-period. For high resolution cluster analyses, WGS-SNP and cgMLST based analyses have similar clustering/timing characteristics even for data obtained from a high incidence setting.ERC grant [INTERRUPTB; no. 311725] to BdJ, FG and CJM; an ERC grant to TS [PhyPD; no. 335529]; an FWO PhD fellowship to PM [grant number 1141217N]; the Leibniz Science Campus EvolLUNG for MM and SN; the German Centre for Infection Research (DZIF) for TAK, MM, CU, PB and SN; a SNF SystemsX grant (TBX) to JP and TS and a Marie Heim-Vögtlin fellowship granted to DK by the Swiss National Science Foundation. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government – department EWI

    Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali

    Get PDF
    In recent years Bamako has been faced with an emerging threat from multidrug resistant TB (MDR-TB). Whole genome sequence analysis was performed on a subset of 76 isolates from a total of 208 isolates recovered from tuberculosis patients in Bamako, Mali between 2006 and 2012. Among the 76 patients, 61(80.3%) new cases and 15(19.7%) retreatment cases, 12 (16%) were infected by MDR-TB. The dominant lineage was the Euro-American lineage, Lineage 4. Within Lineage 4, the Cameroon genotype was the most prevalent genotype (n=20, 26%), followed by the Ghana genotype (n=16, 21%). A sub-clade of the Cameroon genotype, which emerged ~22 years ago was likely to be involved in community transmission. A sub-clade of the Ghana genotype that arose approximately 30 years ago was an important cause of MDR-TB in Bamako. The Ghana genotype isolates appeared more likely to be MDR than other genotypes after controlling for treatment history. We identifed a clade of four related Beijing isolates that included one MDR-TB isolate. It is a major concern to fnd the Cameroon and Ghana genotypes involved in community transmission and MDR-TB respectively. The presence of the Beijing genotype in Bamako remains worrying, given its high transmissibility and virulence
    corecore