132 research outputs found

    Uniform bathymetric zonation of marine benthos on a Pan-Arctic scale

    Get PDF
    While numerous regional studies of bathymetric zonation of benthic fauna globally have been done, few large-scale analyses exist, and no ocean-scale studies have focused on the Arctic Ocean to date. In the present work we, hence, examined bathymetric zonation of macro- and megabenthos over a depth range spanning from the shelf to the abyssal plain (14 – 5416 m) and regionally extending from the Fram Strait to the Beaufort Sea (as a whole hereafter called the Central Arctic). Based on 104 quantitative (box-corers and grabs) and 37 semi- quantitative (trawls) samples compiled from different studies we evaluated bathymetric zonation patterns in abundance, biomass and diversity, and also compared species composition among samples. Abundance and biomass decreased with depth from > 3000 ind. m−2 and > 40 g ww m−2 to ∼ 130 ind. m−2 and −2 corroborating previous studies. Diversity showed a parabolic pattern, peaking at ∼ 100–600 m. Cluster analysis revealed four (macrofauna) and five (megafauna) groups of benthic assemblages, including three that covered the upper and lower continental slope and the abyssal plains with relatively little overlap (named the Lower Shelf – Upper Slope 1, the Lower Slope and the Abyss). Substantial changes in benthic community composition were observed at depths 650–950 m (between the Lower Shelf – Upper Slope 1 and the Lower Slope) and 2600–3000 m (between the Lower Slope and the Abyss), so we interpreted these two depth horizons as major bathymetric boundaries. The first boundary (650–950 m) corresponds to the transition from sublittoral to bathyal fauna consistent with previous studies. The second boundary (2600–3000 m) reflects a decrease in benthic abundance, biomass and diversity within the Central Arctic abyssal plain. Bathymetric patterns and species overturn of benthos were relatively uniform throughout the entire Central Arctic continental slope and abyssal plain. For some regions of the Arctic Ocean, foremost for the area north from Greenland and Canadian Archipelago, benthic data are still unavailable and further research is needed

    Does Presence of a Mid-Ocean Ridge Enhance Biomass and Biodiversity?

    Get PDF
    In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km 2 in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime

    A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining

    Get PDF
    Mineral exploitation has spread from land to shallow coastal waters and is now planned for the offshore, deep seabed. Large seafloor areas are being approved for exploration for seafloor mineral deposits, creating an urgent need for regional environmental management plans. Networks of areas where mining and mining impacts are prohibited are key elements of these plans. We adapt marine reserve design principles to the distinctive biophysical environment of mid-ocean ridges, offer a framework for design and evaluation of these networks to support conservation of benthic ecosystems on mid-ocean ridges, and introduce projected climate-induced changes in the deep sea to the evaluation of reserve design. We enumerate a suite of metrics to measure network performance against conservation targets and network design criteria promulgated by the Convention on Biological Diversity. We apply these metrics to network scenarios on the northern and equatorial Mid-Atlantic Ridge, where contractors are exploring for seafloor massive sulfide (SMS) deposits. A latitudinally distributed network of areas performs well at (i) capturing ecologically important areas and 30 to 50% of the spreading ridge areas, (ii) replicating representative areas, (iii) maintaining along-ridge population connectivity, and (iv) protecting areas potentially less affected by climate-related changes. Critically, the network design is adaptive, allowing for refinement based on new knowledge and the location of mining sites, provided that design principles and conservation targets are maintained. This framework can be applied along the global mid-ocean ridge system as a precautionary measure to protect biodiversity and ecosystem function from impacts of SMS mining

    Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    Get PDF
    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins

    Stochastic analysis of exit fluid temperature records from the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°N) : 1. Modes of variability and implications for subsurface flow

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B07101, doi:10.1029/2006JB004435.Yearlong time series records of exit fluid temperature from the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°N) reveal a complex space-time pattern of flow variability within the mineral deposit. Exit fluid temperatures were measured every 8–10 min from 17 sites distributed across the upper terrace of the mound from June 2003 to June 2004. High-temperature records were obtained using Deep Sea Power and Light SeaLogger® probes deployed in fractures discharging ∼360°C black smoker fluids, and low-temperature records were obtained using VEMCO Ltd. Minilog probes deployed in cracks discharging ∼20°C diffuse flow fluids. The temperature records are considerably more variable than those acquired from vent fields on the fast spreading East Pacific Rise and exhibit a complex mix of both episodic and periodic variability. The diffuse flow records alternate between periods of discharge and periods of what I infer to be recharge when fluid temperatures are equal to background water column levels (∼2.7°C) as ambient seawater is drawn into the seafloor. The space-time patterns of these episodic variations suggest that they represent reorganizations of the secondary circulation system driving diffuse discharge on the upper terrace of the mound on timescales from a few hours to a few days, most likely in response to permeability perturbations. Harmonic temperature oscillations were observed over a range of periods, with the principal lunar semidiurnal tidal period (M2) being most dominant. During certain times, exit fluid temperatures at diffuse sites pulse at diurnal and semidiurnal tidal periods when they are hovering near background water column levels, which I interpret as flow reversals associated with the vertical displacement of a fluid boundary layer at the seafloor interface when the local net flux is near zero. The pulsing behavior is predicted by poroelastic models of tidal loading but is not consistent with effects from tidal currents, which demonstrates that poroelastic effects from tidal loading modulate shallow subsurface flow at the active TAG mound.This work was supported by the National Science Foundation (OCE-0137329)

    The emerging picture of a diverse deep Arctic Ocean seafloor: From habitats to ecosystems

    Get PDF
    Interest in the deep Arctic Ocean is rapidly increasing from governments, policy makers, industry, researchers, and conservation groups, accentuated by the growing accessibility of this remote region by surface vessel traffic. In this review, our goal is to provide an updated taxonomic inventory of benthic taxa known to occur in the deep Arctic Ocean and relate this inventory to habitat diversity. To achieve this goal, we collected data for Arctic metazoan deep-sea taxa from open-access databases, information facilities, and non-digitised scientific literature, limiting the collection to the area north of 66◦N and below 500 m depth (excluding all shelf seas). Although notable progress has been made in understanding the deep Arctic using novel technologies and infrastructure, this data gathering shows that knowledge of deep-sea benthic Arctic communities remains very limited. Yet, through our compilation of habitat maps, we show that the Arctic contains a high diversity of geomorphological features, including slopes, deep basins, submarine canyons, ridges, and seamounts, as well as chemosynthesis-based and biogenic (biologically engineered) ecosystems. To analyse taxon richness and density, using both morphological and molecular data, we compiled 75,404 faunal records with 2,637 taxa. Phyla with the most records were the Arthropoda (21,405), Annelida (13,763) and Porifera (12,591); phyla with the most documented taxa were the Arthropoda (956), Annelida (566) and Mollusca (351). An overview of the dominant groups inhabiting the different geomorphological features highlights regions in the deep Arctic where data are particularly scarce and increased research efforts are needed, particularly the deep basins of the central Arctic Ocean. This scarcity of deep benthic Arctic biodiversity data creates a bottleneck for developing robust management and conservation measures in a rapidly changing region, leading to a call for international collaboration and shared data to ensure understanding and preservation of these fragile Arctic ecosystems

    sFDvent: A global trait database for deep‐sea hydrothermal‐vent fauna

    Get PDF
    Motivation: Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite grow‐ ing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single re‐ pository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFD‐ vent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent da‐ tabase, describe our approach, and evaluate its scope. Finally, we compare the sFD‐ vent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained: Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain: Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain: sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement: Deep‐sea hydrothermal‐vent fauna with spe‐ cies‐level identification present or in progress. Software format: .csv and MS Excel (.xlsx).This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
    corecore