106 research outputs found

    Light-Trap: A SiPM Upgrade for Very High Energy Astronomy and Beyond

    Full text link
    With the development of the Imaging Atmospheric Cherenkov Technique (IACT), Gamma-ray astronomy has become one of the most interesting and productive fields of astrophysics. Current IACT telescope arrays (MAGIC, H.E.S.S, VERITAS) use photomultiplier tubes (PMTs) to detect the optical/near-UV Cherenkov radiation emitted due to the interaction of gamma rays with the atmosphere. For the next generation of IACT experiments, the possibility of replacing the PMTs with Silicon photomultipliers (SiPMs) is being studied. Among the main drawbacks of SiPMs are their limited active area (leading to an increase in the cost and complexity of the camera readout) and their sensitivity to unwanted wavelengths. Here we propose a novel method to build a relatively low-cost pixel consisting of a SiPM attached to a PMMA disc doped with a wavelength shifter. This pixel collects light over a much larger area than a single standard SiPM and improves sensitivity to near-UV light while simultaneously rejecting background. We describe the design of a detector that could also have applications in other fields where detection area and cost are crucial. We present results of simulations and laboratory measurements of a pixel prototype and from field tests performed with a 7-pixel cluster installed in a MAGIC telescope camera.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea. Id:81

    Further investment in Aboriginal and Torres Strait Islander men's health research funding is urgently required

    Get PDF
    Kootsy Canuto, Jacob Prehn, Karla Canuto, Rosie Neate, Graham Gee, Corey Kennedy, Celina Gaweda, Oliver Black, James Smith, Alex Brow

    Belief Revision and Delusions: How Do Patients with Schizophrenia Take Advice?

    Get PDF
    The dominant cognitive model that accounts for the persistence of delusional beliefs in schizophrenia postulates that patients suffer from a general deficit in belief revision. It is generally assumed that this deficit is a consequence of impaired reasoning skills. However, the possibility that such inflexibility affects the entire system of a patient's beliefs has rarely been empirically tested. Using delusion-neutral material in a well-documented advice-taking task, the present study reports that patients with schizophrenia: 1) revise their beliefs, 2) take into account socially provided information to do so, 3) are not overconfident about their judgments, and 4) show less egocentric advice-discounting than controls. This study thus shows that delusional patients' difficulty in revising beliefs is more selective than had been previously assumed. The specificities of the task and the implications for a theory of delusion formation are discussed

    Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease

    Get PDF
    BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
    corecore